A General Algorithm for Solving Rank-one Matrix Sensing

Lianke Qin, Zhao Song, Ruizhe Zhang
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:757-765, 2024.

Abstract

Matrix sensing has many real-world applications in science and engineering, such as system control, distance embedding, and computer vision. The goal of matrix sensing is to recover a matrix $A_\star \in \mathbb{R}^{n \times n}$, based on a sequence of measurements $(u_i,b_i) \in \mathbb{R}^{n} \times \mathbb{R}$ such that $u_i^\top A_\star u_i = b_i$. Previous work (Zhong et al., 2015) focused on the scenario where matrix $A_{\star}$ has a small rank, e.g. rank-$k$. Their analysis heavily relies on the RIP assumption, making it unclear how to generalize to high-rank matrices. In this paper, we relax that rank-$k$ assumption and solve a much more general matrix sensing problem. Given an accuracy parameter $\delta \in (0,1)$, we can compute $A \in \mathbb{R}^{n \times n}$ in $\widetilde{O}(m^{3/2} n^2 \delta^{-1} )$, such that $ |u_i^\top A u_i - b_i| \leq \delta$ for all $i \in [m]$. We design an efficient algorithm with provable convergence guarantees using stochastic gradient descent for this problem.

Cite this Paper


BibTeX
@InProceedings{pmlr-v238-qin24a, title = { A General Algorithm for Solving Rank-one Matrix Sensing }, author = {Qin, Lianke and Song, Zhao and Zhang, Ruizhe}, booktitle = {Proceedings of The 27th International Conference on Artificial Intelligence and Statistics}, pages = {757--765}, year = {2024}, editor = {Dasgupta, Sanjoy and Mandt, Stephan and Li, Yingzhen}, volume = {238}, series = {Proceedings of Machine Learning Research}, month = {02--04 May}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v238/qin24a/qin24a.pdf}, url = {https://proceedings.mlr.press/v238/qin24a.html}, abstract = { Matrix sensing has many real-world applications in science and engineering, such as system control, distance embedding, and computer vision. The goal of matrix sensing is to recover a matrix $A_\star \in \mathbb{R}^{n \times n}$, based on a sequence of measurements $(u_i,b_i) \in \mathbb{R}^{n} \times \mathbb{R}$ such that $u_i^\top A_\star u_i = b_i$. Previous work (Zhong et al., 2015) focused on the scenario where matrix $A_{\star}$ has a small rank, e.g. rank-$k$. Their analysis heavily relies on the RIP assumption, making it unclear how to generalize to high-rank matrices. In this paper, we relax that rank-$k$ assumption and solve a much more general matrix sensing problem. Given an accuracy parameter $\delta \in (0,1)$, we can compute $A \in \mathbb{R}^{n \times n}$ in $\widetilde{O}(m^{3/2} n^2 \delta^{-1} )$, such that $ |u_i^\top A u_i - b_i| \leq \delta$ for all $i \in [m]$. We design an efficient algorithm with provable convergence guarantees using stochastic gradient descent for this problem. } }
Endnote
%0 Conference Paper %T A General Algorithm for Solving Rank-one Matrix Sensing %A Lianke Qin %A Zhao Song %A Ruizhe Zhang %B Proceedings of The 27th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2024 %E Sanjoy Dasgupta %E Stephan Mandt %E Yingzhen Li %F pmlr-v238-qin24a %I PMLR %P 757--765 %U https://proceedings.mlr.press/v238/qin24a.html %V 238 %X Matrix sensing has many real-world applications in science and engineering, such as system control, distance embedding, and computer vision. The goal of matrix sensing is to recover a matrix $A_\star \in \mathbb{R}^{n \times n}$, based on a sequence of measurements $(u_i,b_i) \in \mathbb{R}^{n} \times \mathbb{R}$ such that $u_i^\top A_\star u_i = b_i$. Previous work (Zhong et al., 2015) focused on the scenario where matrix $A_{\star}$ has a small rank, e.g. rank-$k$. Their analysis heavily relies on the RIP assumption, making it unclear how to generalize to high-rank matrices. In this paper, we relax that rank-$k$ assumption and solve a much more general matrix sensing problem. Given an accuracy parameter $\delta \in (0,1)$, we can compute $A \in \mathbb{R}^{n \times n}$ in $\widetilde{O}(m^{3/2} n^2 \delta^{-1} )$, such that $ |u_i^\top A u_i - b_i| \leq \delta$ for all $i \in [m]$. We design an efficient algorithm with provable convergence guarantees using stochastic gradient descent for this problem.
APA
Qin, L., Song, Z. & Zhang, R.. (2024). A General Algorithm for Solving Rank-one Matrix Sensing . Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 238:757-765 Available from https://proceedings.mlr.press/v238/qin24a.html.

Related Material