Uncertainty informed optimal resource allocation with Gaussian process based Bayesian inference

Samarth Gupta, Saurabh Amin
Proceedings of the 6th Annual Learning for Dynamics & Control Conference, PMLR 242:796-812, 2024.

Abstract

We focus on the problem of uncertainty informed allocation of medical resources (vaccines) to heterogeneous populations for managing epidemic spread. We tackle two related questions: (1) For a compartmental ordinary differential equation (ODE) model of epidemic spread, how can we estimate and integrate parameter uncertainty into resource allocation decisions? (2) How can we computationally handle both nonlinear ODE constraints and parameter uncertainties for a generic stochastic optimization problem for resource allocation? To the best of our knowledge current literature does not fully resolve these questions. Here, we develop a data-driven approach to represent parameter uncertainty accurately and tractably in a novel stochastic optimization problem formulation. We first generate a tractable scenario set by estimating the distribution on ODE model parameters using Bayesian inference with Gaussian processes. Next, we develop a parallelized solution algorithm that accounts for scenario-dependent nonlinear ODE constraints. Our scenario-set generation procedure and solution approach are flexible in that they can handle any compartmental epidemiological ODE model. Our computational experiments on two different non-linear ODE models (SEIR and SEPIHR) indicate that accounting for uncertainty in key epidemiological parameters can improve the efficacy of time-critical allocation decisions by 4-8%. This improvement can be attributed to data-driven and optimal (strategic) nature of vaccine allocations.

Cite this Paper


BibTeX
@InProceedings{pmlr-v242-gupta24a, title = {Uncertainty informed optimal resource allocation with {G}aussian process based {B}ayesian inference}, author = {Gupta, Samarth and Amin, Saurabh}, booktitle = {Proceedings of the 6th Annual Learning for Dynamics & Control Conference}, pages = {796--812}, year = {2024}, editor = {Abate, Alessandro and Cannon, Mark and Margellos, Kostas and Papachristodoulou, Antonis}, volume = {242}, series = {Proceedings of Machine Learning Research}, month = {15--17 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v242/gupta24a/gupta24a.pdf}, url = {https://proceedings.mlr.press/v242/gupta24a.html}, abstract = {We focus on the problem of uncertainty informed allocation of medical resources (vaccines) to heterogeneous populations for managing epidemic spread. We tackle two related questions: (1) For a compartmental ordinary differential equation (ODE) model of epidemic spread, how can we estimate and integrate parameter uncertainty into resource allocation decisions? (2) How can we computationally handle both nonlinear ODE constraints and parameter uncertainties for a generic stochastic optimization problem for resource allocation? To the best of our knowledge current literature does not fully resolve these questions. Here, we develop a data-driven approach to represent parameter uncertainty accurately and tractably in a novel stochastic optimization problem formulation. We first generate a tractable scenario set by estimating the distribution on ODE model parameters using Bayesian inference with Gaussian processes. Next, we develop a parallelized solution algorithm that accounts for scenario-dependent nonlinear ODE constraints. Our scenario-set generation procedure and solution approach are flexible in that they can handle any compartmental epidemiological ODE model. Our computational experiments on two different non-linear ODE models (SEIR and SEPIHR) indicate that accounting for uncertainty in key epidemiological parameters can improve the efficacy of time-critical allocation decisions by 4-8%. This improvement can be attributed to data-driven and optimal (strategic) nature of vaccine allocations.} }
Endnote
%0 Conference Paper %T Uncertainty informed optimal resource allocation with Gaussian process based Bayesian inference %A Samarth Gupta %A Saurabh Amin %B Proceedings of the 6th Annual Learning for Dynamics & Control Conference %C Proceedings of Machine Learning Research %D 2024 %E Alessandro Abate %E Mark Cannon %E Kostas Margellos %E Antonis Papachristodoulou %F pmlr-v242-gupta24a %I PMLR %P 796--812 %U https://proceedings.mlr.press/v242/gupta24a.html %V 242 %X We focus on the problem of uncertainty informed allocation of medical resources (vaccines) to heterogeneous populations for managing epidemic spread. We tackle two related questions: (1) For a compartmental ordinary differential equation (ODE) model of epidemic spread, how can we estimate and integrate parameter uncertainty into resource allocation decisions? (2) How can we computationally handle both nonlinear ODE constraints and parameter uncertainties for a generic stochastic optimization problem for resource allocation? To the best of our knowledge current literature does not fully resolve these questions. Here, we develop a data-driven approach to represent parameter uncertainty accurately and tractably in a novel stochastic optimization problem formulation. We first generate a tractable scenario set by estimating the distribution on ODE model parameters using Bayesian inference with Gaussian processes. Next, we develop a parallelized solution algorithm that accounts for scenario-dependent nonlinear ODE constraints. Our scenario-set generation procedure and solution approach are flexible in that they can handle any compartmental epidemiological ODE model. Our computational experiments on two different non-linear ODE models (SEIR and SEPIHR) indicate that accounting for uncertainty in key epidemiological parameters can improve the efficacy of time-critical allocation decisions by 4-8%. This improvement can be attributed to data-driven and optimal (strategic) nature of vaccine allocations.
APA
Gupta, S. & Amin, S.. (2024). Uncertainty informed optimal resource allocation with Gaussian process based Bayesian inference. Proceedings of the 6th Annual Learning for Dynamics & Control Conference, in Proceedings of Machine Learning Research 242:796-812 Available from https://proceedings.mlr.press/v242/gupta24a.html.

Related Material