Efficient skill acquisition for insertion tasks in obstructed environments

Jun Yamada, Jack Collins, Ingmar Posner
Proceedings of the 6th Annual Learning for Dynamics & Control Conference, PMLR 242:615-627, 2024.

Abstract

Data efficiency in robotic skill acquisition is crucial for operating robots in varied small-batch assembly settings. To operate in such environments, robots must have robust obstacle avoidance and versatile goal conditioning acquired from only a few simple demonstrations. Existing approaches, however, fall short of these requirements. Deep reinforcement learning (RL) enables a robot to learn complex manipulation tasks but is often limited to small task spaces in the real world due to sample inefficiency and safety concerns. Motion planning (MP) can generate collision-free paths in obstructed environments, but cannot solve complex manipulation tasks and requires goal states often specified by a user or object-specific pose estimator. In this work, we propose a robust system for efficient skill acquisition designed to address complex insertion tasks in obstructed environments. Our system leverages an object-centric generative model (OCGM) for versatile goal identification to specify a goal for MP combined with RL to solve complex manipulation tasks in obstructed environments. Particularly, OCGM enables one-shot target object identification and re-identification in new scenes, allowing MP to guide the robot to the target object while avoiding obstacles. This is combined with a skill transition network, which bridges the gap between terminal states of MP and feasible start states of a sample-efficient RL policy. The experiments demonstrate that our OCGM-based one-shot goal identification provides competitive accuracy to other baseline approaches and that our modular framework outperforms competitive baselines, including a state-of-the-art RL algorithm, by a significant margin for complex manipulation tasks in obstructed environments.

Cite this Paper


BibTeX
@InProceedings{pmlr-v242-yamada24a, title = {Efficient skill acquisition for insertion tasks in obstructed environments}, author = {Yamada, Jun and Collins, Jack and Posner, Ingmar}, booktitle = {Proceedings of the 6th Annual Learning for Dynamics & Control Conference}, pages = {615--627}, year = {2024}, editor = {Abate, Alessandro and Cannon, Mark and Margellos, Kostas and Papachristodoulou, Antonis}, volume = {242}, series = {Proceedings of Machine Learning Research}, month = {15--17 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v242/yamada24a/yamada24a.pdf}, url = {https://proceedings.mlr.press/v242/yamada24a.html}, abstract = {Data efficiency in robotic skill acquisition is crucial for operating robots in varied small-batch assembly settings. To operate in such environments, robots must have robust obstacle avoidance and versatile goal conditioning acquired from only a few simple demonstrations. Existing approaches, however, fall short of these requirements. Deep reinforcement learning (RL) enables a robot to learn complex manipulation tasks but is often limited to small task spaces in the real world due to sample inefficiency and safety concerns. Motion planning (MP) can generate collision-free paths in obstructed environments, but cannot solve complex manipulation tasks and requires goal states often specified by a user or object-specific pose estimator. In this work, we propose a robust system for efficient skill acquisition designed to address complex insertion tasks in obstructed environments. Our system leverages an object-centric generative model (OCGM) for versatile goal identification to specify a goal for MP combined with RL to solve complex manipulation tasks in obstructed environments. Particularly, OCGM enables one-shot target object identification and re-identification in new scenes, allowing MP to guide the robot to the target object while avoiding obstacles. This is combined with a skill transition network, which bridges the gap between terminal states of MP and feasible start states of a sample-efficient RL policy. The experiments demonstrate that our OCGM-based one-shot goal identification provides competitive accuracy to other baseline approaches and that our modular framework outperforms competitive baselines, including a state-of-the-art RL algorithm, by a significant margin for complex manipulation tasks in obstructed environments.} }
Endnote
%0 Conference Paper %T Efficient skill acquisition for insertion tasks in obstructed environments %A Jun Yamada %A Jack Collins %A Ingmar Posner %B Proceedings of the 6th Annual Learning for Dynamics & Control Conference %C Proceedings of Machine Learning Research %D 2024 %E Alessandro Abate %E Mark Cannon %E Kostas Margellos %E Antonis Papachristodoulou %F pmlr-v242-yamada24a %I PMLR %P 615--627 %U https://proceedings.mlr.press/v242/yamada24a.html %V 242 %X Data efficiency in robotic skill acquisition is crucial for operating robots in varied small-batch assembly settings. To operate in such environments, robots must have robust obstacle avoidance and versatile goal conditioning acquired from only a few simple demonstrations. Existing approaches, however, fall short of these requirements. Deep reinforcement learning (RL) enables a robot to learn complex manipulation tasks but is often limited to small task spaces in the real world due to sample inefficiency and safety concerns. Motion planning (MP) can generate collision-free paths in obstructed environments, but cannot solve complex manipulation tasks and requires goal states often specified by a user or object-specific pose estimator. In this work, we propose a robust system for efficient skill acquisition designed to address complex insertion tasks in obstructed environments. Our system leverages an object-centric generative model (OCGM) for versatile goal identification to specify a goal for MP combined with RL to solve complex manipulation tasks in obstructed environments. Particularly, OCGM enables one-shot target object identification and re-identification in new scenes, allowing MP to guide the robot to the target object while avoiding obstacles. This is combined with a skill transition network, which bridges the gap between terminal states of MP and feasible start states of a sample-efficient RL policy. The experiments demonstrate that our OCGM-based one-shot goal identification provides competitive accuracy to other baseline approaches and that our modular framework outperforms competitive baselines, including a state-of-the-art RL algorithm, by a significant margin for complex manipulation tasks in obstructed environments.
APA
Yamada, J., Collins, J. & Posner, I.. (2024). Efficient skill acquisition for insertion tasks in obstructed environments. Proceedings of the 6th Annual Learning for Dynamics & Control Conference, in Proceedings of Machine Learning Research 242:615-627 Available from https://proceedings.mlr.press/v242/yamada24a.html.

Related Material