Detection of $L_∞$ Geometry in Random Geometric Graphs: Suboptimality of Triangles and Cluster Expansion

Kiril Bangachev, Guy Bresler
Proceedings of Thirty Seventh Conference on Learning Theory, PMLR 247:427-497, 2024.

Abstract

In this paper we study the random geometric graph $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ with $L_q$ distance where each vertex is sampled uniformly from the $d$-dimensional torus and where the connection radius is chosen so that the marginal edge probability is $p$. In addition to results addressing other questions, we make progress on determining when it is possible to distinguish $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ from the Erdős-Rényi graph $\ergraph$. Our strongest result is in the setting $q = \infty$, in which case $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ is the \textsf{AND} of $d$ 1-dimensional random geometric graphs. We derive a formula similar to the \emph{cluster-expansion} from statistical physics, capturing the compatibility of subgraphs from each of the $d$ 1-dimensional copies, and use it to bound the signed expectations of small subgraphs. We show that counting signed 4-cycles is optimal among all low-degree tests, succeeding with high probability if and only if $d = \tilde{o}(np).$ In contrast, the signed triangle test is suboptimal and only succeeds when $d = \tilde{o}((np)^{3/4}).$ Our result stands in sharp contrast to the existing literature on random geometric graphs (mostly focused on $L_2$ geometry) where the signed triangle statistic is optimal.

Cite this Paper


BibTeX
@InProceedings{pmlr-v247-bangachev24a, title = {{Detection of $L_∞$ Geometry in Random Geometric Graphs: Suboptimality of Triangles and Cluster Expansion}}, author = {Bangachev, Kiril and Bresler, Guy}, booktitle = {Proceedings of Thirty Seventh Conference on Learning Theory}, pages = {427--497}, year = {2024}, editor = {Agrawal, Shipra and Roth, Aaron}, volume = {247}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--03 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v247/bangachev24a/bangachev24a.pdf}, url = {https://proceedings.mlr.press/v247/bangachev24a.html}, abstract = {In this paper we study the random geometric graph $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ with $L_q$ distance where each vertex is sampled uniformly from the $d$-dimensional torus and where the connection radius is chosen so that the marginal edge probability is $p$. In addition to results addressing other questions, we make progress on determining when it is possible to distinguish $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ from the Erdős-Rényi graph $\ergraph$. Our strongest result is in the setting $q = \infty$, in which case $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ is the \textsf{AND} of $d$ 1-dimensional random geometric graphs. We derive a formula similar to the \emph{cluster-expansion} from statistical physics, capturing the compatibility of subgraphs from each of the $d$ 1-dimensional copies, and use it to bound the signed expectations of small subgraphs. We show that counting signed 4-cycles is optimal among all low-degree tests, succeeding with high probability if and only if $d = \tilde{o}(np).$ In contrast, the signed triangle test is suboptimal and only succeeds when $d = \tilde{o}((np)^{3/4}).$ Our result stands in sharp contrast to the existing literature on random geometric graphs (mostly focused on $L_2$ geometry) where the signed triangle statistic is optimal.} }
Endnote
%0 Conference Paper %T Detection of $L_∞$ Geometry in Random Geometric Graphs: Suboptimality of Triangles and Cluster Expansion %A Kiril Bangachev %A Guy Bresler %B Proceedings of Thirty Seventh Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2024 %E Shipra Agrawal %E Aaron Roth %F pmlr-v247-bangachev24a %I PMLR %P 427--497 %U https://proceedings.mlr.press/v247/bangachev24a.html %V 247 %X In this paper we study the random geometric graph $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ with $L_q$ distance where each vertex is sampled uniformly from the $d$-dimensional torus and where the connection radius is chosen so that the marginal edge probability is $p$. In addition to results addressing other questions, we make progress on determining when it is possible to distinguish $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ from the Erdős-Rényi graph $\ergraph$. Our strongest result is in the setting $q = \infty$, in which case $\mathsf{RGG}(n,\mathbb{T}^d,\mathsf{Unif},\sigma^q_p,p)$ is the \textsf{AND} of $d$ 1-dimensional random geometric graphs. We derive a formula similar to the \emph{cluster-expansion} from statistical physics, capturing the compatibility of subgraphs from each of the $d$ 1-dimensional copies, and use it to bound the signed expectations of small subgraphs. We show that counting signed 4-cycles is optimal among all low-degree tests, succeeding with high probability if and only if $d = \tilde{o}(np).$ In contrast, the signed triangle test is suboptimal and only succeeds when $d = \tilde{o}((np)^{3/4}).$ Our result stands in sharp contrast to the existing literature on random geometric graphs (mostly focused on $L_2$ geometry) where the signed triangle statistic is optimal.
APA
Bangachev, K. & Bresler, G.. (2024). Detection of $L_∞$ Geometry in Random Geometric Graphs: Suboptimality of Triangles and Cluster Expansion. Proceedings of Thirty Seventh Conference on Learning Theory, in Proceedings of Machine Learning Research 247:427-497 Available from https://proceedings.mlr.press/v247/bangachev24a.html.

Related Material