The complexity of approximate (coarse) correlated equilibrium for incomplete information games

Binghui Peng, Aviad Rubinstein
Proceedings of Thirty Seventh Conference on Learning Theory, PMLR 247:4158-4184, 2024.

Abstract

We study the iteration complexity of decentralized learning of approximate correlated equilibria in incomplete information games. On the negative side, we prove that in extensive-form games, assuming $\mathsf{PPAD} \not\subset \mathsf{TIME}(n^{\polylog(n)})$, any polynomial-time learning algorithms must take at least $2^{\log_2^{1-o(1)}(|\mathcal{I}|)}$ iterations to converge to the set of $\epsilon$-approximate correlated equilibrium, where $|\mathcal{I}|$ is the number of nodes in the game and $\epsilon > 0$ is an absolute constant. This nearly matches, up to the $o(1)$ term, the algorithms of (Peng and Rubinstein STOC’2024, Dagan et al. STOC’2024) for learning $\epsilon$-approximate correlated equilibrium, and resolves an open question of Anagnostides, Kalavasis, Sandholm, and Zampetakis (Anagnostides et al. ITCS 2024). Our lower bound holds even for the easier solution concept of $\epsilon$-approximate coarse correlated equilibrium. On the positive side, we give uncoupled dynamics that reach $\epsilon$-approximate correlated equilibria of a Bayesian game in polylogarithmic iterations, without any dependence of the number of types. This demonstrates a separation between Bayesian games and extensive-form games.

Cite this Paper


BibTeX
@InProceedings{pmlr-v247-peng24a, title = {The complexity of approximate (coarse) correlated equilibrium for incomplete information games}, author = {Peng, Binghui and Rubinstein, Aviad}, booktitle = {Proceedings of Thirty Seventh Conference on Learning Theory}, pages = {4158--4184}, year = {2024}, editor = {Agrawal, Shipra and Roth, Aaron}, volume = {247}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--03 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v247/peng24a/peng24a.pdf}, url = {https://proceedings.mlr.press/v247/peng24a.html}, abstract = { We study the iteration complexity of decentralized learning of approximate correlated equilibria in incomplete information games. On the negative side, we prove that in extensive-form games, assuming $\mathsf{PPAD} \not\subset \mathsf{TIME}(n^{\polylog(n)})$, any polynomial-time learning algorithms must take at least $2^{\log_2^{1-o(1)}(|\mathcal{I}|)}$ iterations to converge to the set of $\epsilon$-approximate correlated equilibrium, where $|\mathcal{I}|$ is the number of nodes in the game and $\epsilon > 0$ is an absolute constant. This nearly matches, up to the $o(1)$ term, the algorithms of (Peng and Rubinstein STOC’2024, Dagan et al. STOC’2024) for learning $\epsilon$-approximate correlated equilibrium, and resolves an open question of Anagnostides, Kalavasis, Sandholm, and Zampetakis (Anagnostides et al. ITCS 2024). Our lower bound holds even for the easier solution concept of $\epsilon$-approximate coarse correlated equilibrium. On the positive side, we give uncoupled dynamics that reach $\epsilon$-approximate correlated equilibria of a Bayesian game in polylogarithmic iterations, without any dependence of the number of types. This demonstrates a separation between Bayesian games and extensive-form games.} }
Endnote
%0 Conference Paper %T The complexity of approximate (coarse) correlated equilibrium for incomplete information games %A Binghui Peng %A Aviad Rubinstein %B Proceedings of Thirty Seventh Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2024 %E Shipra Agrawal %E Aaron Roth %F pmlr-v247-peng24a %I PMLR %P 4158--4184 %U https://proceedings.mlr.press/v247/peng24a.html %V 247 %X We study the iteration complexity of decentralized learning of approximate correlated equilibria in incomplete information games. On the negative side, we prove that in extensive-form games, assuming $\mathsf{PPAD} \not\subset \mathsf{TIME}(n^{\polylog(n)})$, any polynomial-time learning algorithms must take at least $2^{\log_2^{1-o(1)}(|\mathcal{I}|)}$ iterations to converge to the set of $\epsilon$-approximate correlated equilibrium, where $|\mathcal{I}|$ is the number of nodes in the game and $\epsilon > 0$ is an absolute constant. This nearly matches, up to the $o(1)$ term, the algorithms of (Peng and Rubinstein STOC’2024, Dagan et al. STOC’2024) for learning $\epsilon$-approximate correlated equilibrium, and resolves an open question of Anagnostides, Kalavasis, Sandholm, and Zampetakis (Anagnostides et al. ITCS 2024). Our lower bound holds even for the easier solution concept of $\epsilon$-approximate coarse correlated equilibrium. On the positive side, we give uncoupled dynamics that reach $\epsilon$-approximate correlated equilibria of a Bayesian game in polylogarithmic iterations, without any dependence of the number of types. This demonstrates a separation between Bayesian games and extensive-form games.
APA
Peng, B. & Rubinstein, A.. (2024). The complexity of approximate (coarse) correlated equilibrium for incomplete information games. Proceedings of Thirty Seventh Conference on Learning Theory, in Proceedings of Machine Learning Research 247:4158-4184 Available from https://proceedings.mlr.press/v247/peng24a.html.

Related Material