[edit]

# The sample complexity of multi-distribution learning

*Proceedings of Thirty Seventh Conference on Learning Theory*, PMLR 247:4185-4204, 2024.

#### Abstract

Multi-distribution learning generalizes the classic PAC learning to handle data coming from multiple distributions. Given a set of $k$ data distributions and a hypothesis class of VC dimension $d$, the goal is to learn a hypothesis that minimizes the maximum population loss over $k$ distributions, up to $\epsilon$ additive error. In this paper, we settle the sample complexity of multi-distribution learning by giving an algorithm of sample complexity $\widetilde{O}((d+k)\epsilon^{-2}) \cdot (k/\epsilon)^{o(1)}$. This matches the lower bound up to sub-polynomial factor and resolves the COLT 2023 open problem of Awasthi, Haghtalab and Zhao.