[edit]
Dimension-free Structured Covariance Estimation
Proceedings of Thirty Seventh Conference on Learning Theory, PMLR 247:4276-4306, 2024.
Abstract
Given a sample of i.i.d. high-dimensional centered random vectors, we consider a problem of estimation of their covariance matrix $\Sigma$ with an additional assumption that $\Sigma$ can be represented as a sum of a few Kronecker products of smaller matrices. Under mild conditions, we derive the first non-asymptotic dimension-free high-probability bound on the Frobenius distance between $\Sigma$ and a widely used penalized permuted least squares estimate. Because of the hidden structure, the established rate of convergence is faster than in the standard covariance estimation problem.