Nearly Optimal Regret for Decentralized Online Convex Optimization

Yuanyu Wan, Tong Wei, Mingli Song, Lijun Zhang
Proceedings of Thirty Seventh Conference on Learning Theory, PMLR 247:4862-4888, 2024.

Abstract

We investigate decentralized online convex optimization (D-OCO), in which a set of local learners are required to minimize a sequence of global loss functions using only local computations and communications. Previous studies have established $O(n^{5/4}\rho^{-1/2}\sqrt{T})$ and ${O}(n^{3/2}\rho^{-1}\log T)$ regret bounds for convex and strongly convex functions respectively, where $n$ is the number of local learners, $\rho<1$ is the spectral gap of the communication matrix, and $T$ is the time horizon. However, there exist large gaps from the existing lower bounds, i.e., $\Omega(n\sqrt{T})$ for convex functions and $\Omega(n)$ for strongly convex functions. To fill these gaps, in this paper, we first develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions to $\tilde{O}(n\rho^{-1/4}\sqrt{T})$ and $\tilde{O}(n\rho^{-1/2}\log T)$. The primary technique is to design an online accelerated gossip strategy that enjoys a faster average consensus among local learners. Furthermore, by carefully exploiting the spectral properties of a specific network topology, we enhance the lower bounds for convex and strongly convex functions to $\Omega(n\rho^{-1/4}\sqrt{T})$ and $\Omega(n\rho^{-1/2})$, respectively. These lower bounds suggest that our algorithms are nearly optimal in terms of $T$, $n$, and $\rho$.

Cite this Paper


BibTeX
@InProceedings{pmlr-v247-wan24a, title = {Nearly Optimal Regret for Decentralized Online Convex Optimization}, author = {Wan, Yuanyu and Wei, Tong and Song, Mingli and Zhang, Lijun}, booktitle = {Proceedings of Thirty Seventh Conference on Learning Theory}, pages = {4862--4888}, year = {2024}, editor = {Agrawal, Shipra and Roth, Aaron}, volume = {247}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--03 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v247/wan24a/wan24a.pdf}, url = {https://proceedings.mlr.press/v247/wan24a.html}, abstract = {We investigate decentralized online convex optimization (D-OCO), in which a set of local learners are required to minimize a sequence of global loss functions using only local computations and communications. Previous studies have established $O(n^{5/4}\rho^{-1/2}\sqrt{T})$ and ${O}(n^{3/2}\rho^{-1}\log T)$ regret bounds for convex and strongly convex functions respectively, where $n$ is the number of local learners, $\rho<1$ is the spectral gap of the communication matrix, and $T$ is the time horizon. However, there exist large gaps from the existing lower bounds, i.e., $\Omega(n\sqrt{T})$ for convex functions and $\Omega(n)$ for strongly convex functions. To fill these gaps, in this paper, we first develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions to $\tilde{O}(n\rho^{-1/4}\sqrt{T})$ and $\tilde{O}(n\rho^{-1/2}\log T)$. The primary technique is to design an online accelerated gossip strategy that enjoys a faster average consensus among local learners. Furthermore, by carefully exploiting the spectral properties of a specific network topology, we enhance the lower bounds for convex and strongly convex functions to $\Omega(n\rho^{-1/4}\sqrt{T})$ and $\Omega(n\rho^{-1/2})$, respectively. These lower bounds suggest that our algorithms are nearly optimal in terms of $T$, $n$, and $\rho$.} }
Endnote
%0 Conference Paper %T Nearly Optimal Regret for Decentralized Online Convex Optimization %A Yuanyu Wan %A Tong Wei %A Mingli Song %A Lijun Zhang %B Proceedings of Thirty Seventh Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2024 %E Shipra Agrawal %E Aaron Roth %F pmlr-v247-wan24a %I PMLR %P 4862--4888 %U https://proceedings.mlr.press/v247/wan24a.html %V 247 %X We investigate decentralized online convex optimization (D-OCO), in which a set of local learners are required to minimize a sequence of global loss functions using only local computations and communications. Previous studies have established $O(n^{5/4}\rho^{-1/2}\sqrt{T})$ and ${O}(n^{3/2}\rho^{-1}\log T)$ regret bounds for convex and strongly convex functions respectively, where $n$ is the number of local learners, $\rho<1$ is the spectral gap of the communication matrix, and $T$ is the time horizon. However, there exist large gaps from the existing lower bounds, i.e., $\Omega(n\sqrt{T})$ for convex functions and $\Omega(n)$ for strongly convex functions. To fill these gaps, in this paper, we first develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions to $\tilde{O}(n\rho^{-1/4}\sqrt{T})$ and $\tilde{O}(n\rho^{-1/2}\log T)$. The primary technique is to design an online accelerated gossip strategy that enjoys a faster average consensus among local learners. Furthermore, by carefully exploiting the spectral properties of a specific network topology, we enhance the lower bounds for convex and strongly convex functions to $\Omega(n\rho^{-1/4}\sqrt{T})$ and $\Omega(n\rho^{-1/2})$, respectively. These lower bounds suggest that our algorithms are nearly optimal in terms of $T$, $n$, and $\rho$.
APA
Wan, Y., Wei, T., Song, M. & Zhang, L.. (2024). Nearly Optimal Regret for Decentralized Online Convex Optimization. Proceedings of Thirty Seventh Conference on Learning Theory, in Proceedings of Machine Learning Research 247:4862-4888 Available from https://proceedings.mlr.press/v247/wan24a.html.

Related Material