[edit]
Optimal score estimation via empirical Bayes smoothing
Proceedings of Thirty Seventh Conference on Learning Theory, PMLR 247:4958-4991, 2024.
Abstract
We study the problem of estimating the score function of an unknown probability distribution $\rho^*$ from $n$ independent and identically distributed observations in $d$ dimensions. Assuming that $\rho^*$ is subgaussian and has a Lipschitz-continuous score function $s^*$, we establish the optimal rate of $\tilde \Theta(n^{-\frac{2}{d+4}})$ for this estimation problem under the loss function $\|\hat s - s^*\|^2_{L^2(\rho^*)}$ that is commonly used in the score matching literature, highlighting the curse of dimensionality where sample complexity for accurate score estimation grows exponentially with the dimension $d$. Leveraging key insights in empirical Bayes theory as well as a new convergence rate of smoothed empirical distribution in Hellinger distance, we show that a regularized score estimator based on a Gaussian kernel attains this rate, shown optimal by a matching minimax lower bound. We also discuss extensions to estimating $\beta$-Hölder continuous scores with $\beta \leq 1$, as well as the implication of our theory on the sample complexity of score-based generative models.