Spectral Compressed Sensing via Structured Matrix Completion

Yuxin Chen, Yuejie Chi
Proceedings of the 30th International Conference on Machine Learning, PMLR 28(3):414-422, 2013.

Abstract

The paper studies the problem of recovering a spectrally sparse object from a small number of time domain samples. Specifically, the object of interest with ambient dimension n is assumed to be a mixture of r complex multi-dimensional sinusoids, while the underlying frequencies can assume any value in the unit disk. Conventional compressed sensing paradigms suffer from the \em basis mismatch issue when imposing a discrete dictionary on the Fourier representation. To address this problem, we develop a novel nonparametric algorithm, called enhanced matrix completion (EMaC), based on structured matrix completion. The algorithm starts by converting the data into a low-rank enhanced form with multi-fold Hankel structure, then attempts recovery via nuclear norm minimization. Under mild incoherence conditions, EMaC allows perfect recovery as soon as the number of samples exceeds the order of \mathcalO(r\log^2 n). We also show that, in many instances, accurate completion of a low-rank multi-fold Hankel matrix is possible when the number of observed entries is proportional to the information theoretical limits (except for a logarithmic gap). The robustness of EMaC against bounded noise and its applicability to super resolution are further demonstrated by numerical experiments.

Cite this Paper


BibTeX
@InProceedings{pmlr-v28-chen13g, title = {Spectral Compressed Sensing via Structured Matrix Completion}, author = {Chen, Yuxin and Chi, Yuejie}, booktitle = {Proceedings of the 30th International Conference on Machine Learning}, pages = {414--422}, year = {2013}, editor = {Dasgupta, Sanjoy and McAllester, David}, volume = {28}, number = {3}, series = {Proceedings of Machine Learning Research}, address = {Atlanta, Georgia, USA}, month = {17--19 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v28/chen13g.pdf}, url = {https://proceedings.mlr.press/v28/chen13g.html}, abstract = {The paper studies the problem of recovering a spectrally sparse object from a small number of time domain samples. Specifically, the object of interest with ambient dimension n is assumed to be a mixture of r complex multi-dimensional sinusoids, while the underlying frequencies can assume any value in the unit disk. Conventional compressed sensing paradigms suffer from the \em basis mismatch issue when imposing a discrete dictionary on the Fourier representation. To address this problem, we develop a novel nonparametric algorithm, called enhanced matrix completion (EMaC), based on structured matrix completion. The algorithm starts by converting the data into a low-rank enhanced form with multi-fold Hankel structure, then attempts recovery via nuclear norm minimization. Under mild incoherence conditions, EMaC allows perfect recovery as soon as the number of samples exceeds the order of \mathcalO(r\log^2 n). We also show that, in many instances, accurate completion of a low-rank multi-fold Hankel matrix is possible when the number of observed entries is proportional to the information theoretical limits (except for a logarithmic gap). The robustness of EMaC against bounded noise and its applicability to super resolution are further demonstrated by numerical experiments. } }
Endnote
%0 Conference Paper %T Spectral Compressed Sensing via Structured Matrix Completion %A Yuxin Chen %A Yuejie Chi %B Proceedings of the 30th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2013 %E Sanjoy Dasgupta %E David McAllester %F pmlr-v28-chen13g %I PMLR %P 414--422 %U https://proceedings.mlr.press/v28/chen13g.html %V 28 %N 3 %X The paper studies the problem of recovering a spectrally sparse object from a small number of time domain samples. Specifically, the object of interest with ambient dimension n is assumed to be a mixture of r complex multi-dimensional sinusoids, while the underlying frequencies can assume any value in the unit disk. Conventional compressed sensing paradigms suffer from the \em basis mismatch issue when imposing a discrete dictionary on the Fourier representation. To address this problem, we develop a novel nonparametric algorithm, called enhanced matrix completion (EMaC), based on structured matrix completion. The algorithm starts by converting the data into a low-rank enhanced form with multi-fold Hankel structure, then attempts recovery via nuclear norm minimization. Under mild incoherence conditions, EMaC allows perfect recovery as soon as the number of samples exceeds the order of \mathcalO(r\log^2 n). We also show that, in many instances, accurate completion of a low-rank multi-fold Hankel matrix is possible when the number of observed entries is proportional to the information theoretical limits (except for a logarithmic gap). The robustness of EMaC against bounded noise and its applicability to super resolution are further demonstrated by numerical experiments.
RIS
TY - CPAPER TI - Spectral Compressed Sensing via Structured Matrix Completion AU - Yuxin Chen AU - Yuejie Chi BT - Proceedings of the 30th International Conference on Machine Learning DA - 2013/05/26 ED - Sanjoy Dasgupta ED - David McAllester ID - pmlr-v28-chen13g PB - PMLR DP - Proceedings of Machine Learning Research VL - 28 IS - 3 SP - 414 EP - 422 L1 - http://proceedings.mlr.press/v28/chen13g.pdf UR - https://proceedings.mlr.press/v28/chen13g.html AB - The paper studies the problem of recovering a spectrally sparse object from a small number of time domain samples. Specifically, the object of interest with ambient dimension n is assumed to be a mixture of r complex multi-dimensional sinusoids, while the underlying frequencies can assume any value in the unit disk. Conventional compressed sensing paradigms suffer from the \em basis mismatch issue when imposing a discrete dictionary on the Fourier representation. To address this problem, we develop a novel nonparametric algorithm, called enhanced matrix completion (EMaC), based on structured matrix completion. The algorithm starts by converting the data into a low-rank enhanced form with multi-fold Hankel structure, then attempts recovery via nuclear norm minimization. Under mild incoherence conditions, EMaC allows perfect recovery as soon as the number of samples exceeds the order of \mathcalO(r\log^2 n). We also show that, in many instances, accurate completion of a low-rank multi-fold Hankel matrix is possible when the number of observed entries is proportional to the information theoretical limits (except for a logarithmic gap). The robustness of EMaC against bounded noise and its applicability to super resolution are further demonstrated by numerical experiments. ER -
APA
Chen, Y. & Chi, Y.. (2013). Spectral Compressed Sensing via Structured Matrix Completion. Proceedings of the 30th International Conference on Machine Learning, in Proceedings of Machine Learning Research 28(3):414-422 Available from https://proceedings.mlr.press/v28/chen13g.html.

Related Material