On the importance of initialization and momentum in deep learning

Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton
Proceedings of the 30th International Conference on Machine Learning, PMLR 28(3):1139-1147, 2013.

Abstract

Deep and recurrent neural networks (DNNs and RNNs respectively) are powerful models that were considered to be almost impossible to train using stochastic gradient descent with momentum. In this paper, we show that when stochastic gradient descent with momentum uses a well-designed random initialization and a particular type of slowly increasing schedule for the momentum parameter, it can train both DNNs and RNNs (on datasets with long-term dependencies) to levels of performance that were previously achievable only with Hessian-Free optimization. We find that both the initialization and the momentum are crucial since poorly initialized networks cannot be trained with momentum and well-initialized networks perform markedly worse when the momentum is absent or poorly tuned. Our success training these models suggests that previous attempts to train deep and recurrent neural networks from random initializations have likely failed due to poor initialization schemes. Furthermore, carefully tuned momentum methods suffice for dealing with the curvature issues in deep and recurrent network training objectives without the need for sophisticated second-order methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v28-sutskever13, title = {On the importance of initialization and momentum in deep learning}, author = {Sutskever, Ilya and Martens, James and Dahl, George and Hinton, Geoffrey}, booktitle = {Proceedings of the 30th International Conference on Machine Learning}, pages = {1139--1147}, year = {2013}, editor = {Dasgupta, Sanjoy and McAllester, David}, volume = {28}, number = {3}, series = {Proceedings of Machine Learning Research}, address = {Atlanta, Georgia, USA}, month = {17--19 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v28/sutskever13.pdf}, url = {https://proceedings.mlr.press/v28/sutskever13.html}, abstract = {Deep and recurrent neural networks (DNNs and RNNs respectively) are powerful models that were considered to be almost impossible to train using stochastic gradient descent with momentum. In this paper, we show that when stochastic gradient descent with momentum uses a well-designed random initialization and a particular type of slowly increasing schedule for the momentum parameter, it can train both DNNs and RNNs (on datasets with long-term dependencies) to levels of performance that were previously achievable only with Hessian-Free optimization. We find that both the initialization and the momentum are crucial since poorly initialized networks cannot be trained with momentum and well-initialized networks perform markedly worse when the momentum is absent or poorly tuned. Our success training these models suggests that previous attempts to train deep and recurrent neural networks from random initializations have likely failed due to poor initialization schemes. Furthermore, carefully tuned momentum methods suffice for dealing with the curvature issues in deep and recurrent network training objectives without the need for sophisticated second-order methods. } }
Endnote
%0 Conference Paper %T On the importance of initialization and momentum in deep learning %A Ilya Sutskever %A James Martens %A George Dahl %A Geoffrey Hinton %B Proceedings of the 30th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2013 %E Sanjoy Dasgupta %E David McAllester %F pmlr-v28-sutskever13 %I PMLR %P 1139--1147 %U https://proceedings.mlr.press/v28/sutskever13.html %V 28 %N 3 %X Deep and recurrent neural networks (DNNs and RNNs respectively) are powerful models that were considered to be almost impossible to train using stochastic gradient descent with momentum. In this paper, we show that when stochastic gradient descent with momentum uses a well-designed random initialization and a particular type of slowly increasing schedule for the momentum parameter, it can train both DNNs and RNNs (on datasets with long-term dependencies) to levels of performance that were previously achievable only with Hessian-Free optimization. We find that both the initialization and the momentum are crucial since poorly initialized networks cannot be trained with momentum and well-initialized networks perform markedly worse when the momentum is absent or poorly tuned. Our success training these models suggests that previous attempts to train deep and recurrent neural networks from random initializations have likely failed due to poor initialization schemes. Furthermore, carefully tuned momentum methods suffice for dealing with the curvature issues in deep and recurrent network training objectives without the need for sophisticated second-order methods.
RIS
TY - CPAPER TI - On the importance of initialization and momentum in deep learning AU - Ilya Sutskever AU - James Martens AU - George Dahl AU - Geoffrey Hinton BT - Proceedings of the 30th International Conference on Machine Learning DA - 2013/05/26 ED - Sanjoy Dasgupta ED - David McAllester ID - pmlr-v28-sutskever13 PB - PMLR DP - Proceedings of Machine Learning Research VL - 28 IS - 3 SP - 1139 EP - 1147 L1 - http://proceedings.mlr.press/v28/sutskever13.pdf UR - https://proceedings.mlr.press/v28/sutskever13.html AB - Deep and recurrent neural networks (DNNs and RNNs respectively) are powerful models that were considered to be almost impossible to train using stochastic gradient descent with momentum. In this paper, we show that when stochastic gradient descent with momentum uses a well-designed random initialization and a particular type of slowly increasing schedule for the momentum parameter, it can train both DNNs and RNNs (on datasets with long-term dependencies) to levels of performance that were previously achievable only with Hessian-Free optimization. We find that both the initialization and the momentum are crucial since poorly initialized networks cannot be trained with momentum and well-initialized networks perform markedly worse when the momentum is absent or poorly tuned. Our success training these models suggests that previous attempts to train deep and recurrent neural networks from random initializations have likely failed due to poor initialization schemes. Furthermore, carefully tuned momentum methods suffice for dealing with the curvature issues in deep and recurrent network training objectives without the need for sophisticated second-order methods. ER -
APA
Sutskever, I., Martens, J., Dahl, G. & Hinton, G.. (2013). On the importance of initialization and momentum in deep learning. Proceedings of the 30th International Conference on Machine Learning, in Proceedings of Machine Learning Research 28(3):1139-1147 Available from https://proceedings.mlr.press/v28/sutskever13.html.

Related Material