A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

Jinfeng Yi, Lijun Zhang, Jun Wang, Rong Jin, Anil Jain
Proceedings of the 31st International Conference on Machine Learning, PMLR 32(2):658-666, 2014.

Abstract

Learning a statistical model for high-dimensional data is an important topic in machine learning. Although this problem has been well studied in the supervised setting, little is known about its unsupervised counterpart. In this work, we focus on the problem of clustering high-dimensional data with sparse centers. In particular, we address the following open question in unsupervised learning: “is it possible to reliably cluster high-dimensional data when the number of samples is smaller than the data dimensionality?" We develop an efficient clustering algorithm that is able to estimate sparse cluster centers with a single pass over the data. Our theoretical analysis shows that the proposed algorithm is able to accurately recover cluster centers with only O(s\log d) number of samples (data points), provided all the cluster centers are s-sparse vectors in a d dimensional space. Experimental results verify both the effectiveness and efficiency of the proposed clustering algorithm compared to the state-of-the-art algorithms on several benchmark datasets.

Cite this Paper


BibTeX
@InProceedings{pmlr-v32-yib14, title = {A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data}, author = {Yi, Jinfeng and Zhang, Lijun and Wang, Jun and Jin, Rong and Jain, Anil}, booktitle = {Proceedings of the 31st International Conference on Machine Learning}, pages = {658--666}, year = {2014}, editor = {Xing, Eric P. and Jebara, Tony}, volume = {32}, number = {2}, series = {Proceedings of Machine Learning Research}, address = {Bejing, China}, month = {22--24 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v32/yib14.pdf}, url = {https://proceedings.mlr.press/v32/yib14.html}, abstract = {Learning a statistical model for high-dimensional data is an important topic in machine learning. Although this problem has been well studied in the supervised setting, little is known about its unsupervised counterpart. In this work, we focus on the problem of clustering high-dimensional data with sparse centers. In particular, we address the following open question in unsupervised learning: “is it possible to reliably cluster high-dimensional data when the number of samples is smaller than the data dimensionality?" We develop an efficient clustering algorithm that is able to estimate sparse cluster centers with a single pass over the data. Our theoretical analysis shows that the proposed algorithm is able to accurately recover cluster centers with only O(s\log d) number of samples (data points), provided all the cluster centers are s-sparse vectors in a d dimensional space. Experimental results verify both the effectiveness and efficiency of the proposed clustering algorithm compared to the state-of-the-art algorithms on several benchmark datasets.} }
Endnote
%0 Conference Paper %T A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data %A Jinfeng Yi %A Lijun Zhang %A Jun Wang %A Rong Jin %A Anil Jain %B Proceedings of the 31st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2014 %E Eric P. Xing %E Tony Jebara %F pmlr-v32-yib14 %I PMLR %P 658--666 %U https://proceedings.mlr.press/v32/yib14.html %V 32 %N 2 %X Learning a statistical model for high-dimensional data is an important topic in machine learning. Although this problem has been well studied in the supervised setting, little is known about its unsupervised counterpart. In this work, we focus on the problem of clustering high-dimensional data with sparse centers. In particular, we address the following open question in unsupervised learning: “is it possible to reliably cluster high-dimensional data when the number of samples is smaller than the data dimensionality?" We develop an efficient clustering algorithm that is able to estimate sparse cluster centers with a single pass over the data. Our theoretical analysis shows that the proposed algorithm is able to accurately recover cluster centers with only O(s\log d) number of samples (data points), provided all the cluster centers are s-sparse vectors in a d dimensional space. Experimental results verify both the effectiveness and efficiency of the proposed clustering algorithm compared to the state-of-the-art algorithms on several benchmark datasets.
RIS
TY - CPAPER TI - A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data AU - Jinfeng Yi AU - Lijun Zhang AU - Jun Wang AU - Rong Jin AU - Anil Jain BT - Proceedings of the 31st International Conference on Machine Learning DA - 2014/06/18 ED - Eric P. Xing ED - Tony Jebara ID - pmlr-v32-yib14 PB - PMLR DP - Proceedings of Machine Learning Research VL - 32 IS - 2 SP - 658 EP - 666 L1 - http://proceedings.mlr.press/v32/yib14.pdf UR - https://proceedings.mlr.press/v32/yib14.html AB - Learning a statistical model for high-dimensional data is an important topic in machine learning. Although this problem has been well studied in the supervised setting, little is known about its unsupervised counterpart. In this work, we focus on the problem of clustering high-dimensional data with sparse centers. In particular, we address the following open question in unsupervised learning: “is it possible to reliably cluster high-dimensional data when the number of samples is smaller than the data dimensionality?" We develop an efficient clustering algorithm that is able to estimate sparse cluster centers with a single pass over the data. Our theoretical analysis shows that the proposed algorithm is able to accurately recover cluster centers with only O(s\log d) number of samples (data points), provided all the cluster centers are s-sparse vectors in a d dimensional space. Experimental results verify both the effectiveness and efficiency of the proposed clustering algorithm compared to the state-of-the-art algorithms on several benchmark datasets. ER -
APA
Yi, J., Zhang, L., Wang, J., Jin, R. & Jain, A.. (2014). A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data. Proceedings of the 31st International Conference on Machine Learning, in Proceedings of Machine Learning Research 32(2):658-666 Available from https://proceedings.mlr.press/v32/yib14.html.

Related Material