Domain Adaptation with Conditional Transferable Components

Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, Bernhard Schölkopf
Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:2839-2848, 2016.

Abstract

Domain adaptation arises in supervised learning when the training (source domain) and test (target domain) data have different distributions. Let X and Y denote the features and target, respectively, previous work on domain adaptation considers the covariate shift situation where the distribution of the features P(X) changes across domains while the conditional distribution P(Y|X) stays the same. To reduce domain discrepancy, recent methods try to find invariant components \mathcalT(X) that have similar P(\mathcalT(X)) by explicitly minimizing a distribution discrepancy measure. However, it is not clear if P(Y|\mathcalT(X)) in different domains is also similar when P(Y|X) changes. Furthermore, transferable components do not necessarily have to be invariant. If the change in some components is identifiable, we can make use of such components for prediction in the target domain. In this paper, we focus on the case where P(X|Y) and P(Y) both change in a causal system in which Y is the cause for X. Under appropriate assumptions, we aim to extract conditional transferable components whose conditional distribution P(\mathcalT(X)|Y) is invariant after proper location-scale (LS) transformations, and identify how P(Y) changes between domains simultaneously. We provide theoretical analysis and empirical evaluation on both synthetic and real-world data to show the effectiveness of our method.

Cite this Paper


BibTeX
@InProceedings{pmlr-v48-gong16, title = {Domain Adaptation with Conditional Transferable Components}, author = {Gong, Mingming and Zhang, Kun and Liu, Tongliang and Tao, Dacheng and Glymour, Clark and Schölkopf, Bernhard}, booktitle = {Proceedings of The 33rd International Conference on Machine Learning}, pages = {2839--2848}, year = {2016}, editor = {Balcan, Maria Florina and Weinberger, Kilian Q.}, volume = {48}, series = {Proceedings of Machine Learning Research}, address = {New York, New York, USA}, month = {20--22 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v48/gong16.pdf}, url = {https://proceedings.mlr.press/v48/gong16.html}, abstract = {Domain adaptation arises in supervised learning when the training (source domain) and test (target domain) data have different distributions. Let X and Y denote the features and target, respectively, previous work on domain adaptation considers the covariate shift situation where the distribution of the features P(X) changes across domains while the conditional distribution P(Y|X) stays the same. To reduce domain discrepancy, recent methods try to find invariant components \mathcalT(X) that have similar P(\mathcalT(X)) by explicitly minimizing a distribution discrepancy measure. However, it is not clear if P(Y|\mathcalT(X)) in different domains is also similar when P(Y|X) changes. Furthermore, transferable components do not necessarily have to be invariant. If the change in some components is identifiable, we can make use of such components for prediction in the target domain. In this paper, we focus on the case where P(X|Y) and P(Y) both change in a causal system in which Y is the cause for X. Under appropriate assumptions, we aim to extract conditional transferable components whose conditional distribution P(\mathcalT(X)|Y) is invariant after proper location-scale (LS) transformations, and identify how P(Y) changes between domains simultaneously. We provide theoretical analysis and empirical evaluation on both synthetic and real-world data to show the effectiveness of our method.} }
Endnote
%0 Conference Paper %T Domain Adaptation with Conditional Transferable Components %A Mingming Gong %A Kun Zhang %A Tongliang Liu %A Dacheng Tao %A Clark Glymour %A Bernhard Schölkopf %B Proceedings of The 33rd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2016 %E Maria Florina Balcan %E Kilian Q. Weinberger %F pmlr-v48-gong16 %I PMLR %P 2839--2848 %U https://proceedings.mlr.press/v48/gong16.html %V 48 %X Domain adaptation arises in supervised learning when the training (source domain) and test (target domain) data have different distributions. Let X and Y denote the features and target, respectively, previous work on domain adaptation considers the covariate shift situation where the distribution of the features P(X) changes across domains while the conditional distribution P(Y|X) stays the same. To reduce domain discrepancy, recent methods try to find invariant components \mathcalT(X) that have similar P(\mathcalT(X)) by explicitly minimizing a distribution discrepancy measure. However, it is not clear if P(Y|\mathcalT(X)) in different domains is also similar when P(Y|X) changes. Furthermore, transferable components do not necessarily have to be invariant. If the change in some components is identifiable, we can make use of such components for prediction in the target domain. In this paper, we focus on the case where P(X|Y) and P(Y) both change in a causal system in which Y is the cause for X. Under appropriate assumptions, we aim to extract conditional transferable components whose conditional distribution P(\mathcalT(X)|Y) is invariant after proper location-scale (LS) transformations, and identify how P(Y) changes between domains simultaneously. We provide theoretical analysis and empirical evaluation on both synthetic and real-world data to show the effectiveness of our method.
RIS
TY - CPAPER TI - Domain Adaptation with Conditional Transferable Components AU - Mingming Gong AU - Kun Zhang AU - Tongliang Liu AU - Dacheng Tao AU - Clark Glymour AU - Bernhard Schölkopf BT - Proceedings of The 33rd International Conference on Machine Learning DA - 2016/06/11 ED - Maria Florina Balcan ED - Kilian Q. Weinberger ID - pmlr-v48-gong16 PB - PMLR DP - Proceedings of Machine Learning Research VL - 48 SP - 2839 EP - 2848 L1 - http://proceedings.mlr.press/v48/gong16.pdf UR - https://proceedings.mlr.press/v48/gong16.html AB - Domain adaptation arises in supervised learning when the training (source domain) and test (target domain) data have different distributions. Let X and Y denote the features and target, respectively, previous work on domain adaptation considers the covariate shift situation where the distribution of the features P(X) changes across domains while the conditional distribution P(Y|X) stays the same. To reduce domain discrepancy, recent methods try to find invariant components \mathcalT(X) that have similar P(\mathcalT(X)) by explicitly minimizing a distribution discrepancy measure. However, it is not clear if P(Y|\mathcalT(X)) in different domains is also similar when P(Y|X) changes. Furthermore, transferable components do not necessarily have to be invariant. If the change in some components is identifiable, we can make use of such components for prediction in the target domain. In this paper, we focus on the case where P(X|Y) and P(Y) both change in a causal system in which Y is the cause for X. Under appropriate assumptions, we aim to extract conditional transferable components whose conditional distribution P(\mathcalT(X)|Y) is invariant after proper location-scale (LS) transformations, and identify how P(Y) changes between domains simultaneously. We provide theoretical analysis and empirical evaluation on both synthetic and real-world data to show the effectiveness of our method. ER -
APA
Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C. & Schölkopf, B.. (2016). Domain Adaptation with Conditional Transferable Components. Proceedings of The 33rd International Conference on Machine Learning, in Proceedings of Machine Learning Research 48:2839-2848 Available from https://proceedings.mlr.press/v48/gong16.html.

Related Material