A Kronecker-factored approximate Fisher matrix for convolution layers

Roger Grosse, James Martens
Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:573-582, 2016.

Abstract

Second-order optimization methods such as natural gradient descent have the potential to speed up training of neural networks by correcting for the curvature of the loss function. Unfortunately, the exact natural gradient is impractical to compute for large models, and most approximations either require an expensive iterative procedure or make crude approximations to the curvature. We present Kronecker Factors for Convolution (KFC), a tractable approximation to the Fisher matrix for convolutional networks based on a structured probabilistic model for the distribution over backpropagated derivatives. Similarly to the recently proposed Kronecker-Factored Approximate Curvature (K-FAC), each block of the approximate Fisher matrix decomposes as the Kronecker product of small matrices, allowing for efficient inversion. KFC captures important curvature information while still yielding comparably efficient updates to stochastic gradient descent (SGD). We show that the updates are invariant to commonly used reparameterizations, such as centering of the activations. In our experiments, approximate natural gradient descent with KFC was able to train convolutional networks several times faster than carefully tuned SGD. Furthermore, it was able to train the networks in 10-20 times fewer iterations than SGD, suggesting its potential applicability in a distributed setting.

Cite this Paper


BibTeX
@InProceedings{pmlr-v48-grosse16, title = {A Kronecker-factored approximate Fisher matrix for convolution layers}, author = {Grosse, Roger and Martens, James}, booktitle = {Proceedings of The 33rd International Conference on Machine Learning}, pages = {573--582}, year = {2016}, editor = {Balcan, Maria Florina and Weinberger, Kilian Q.}, volume = {48}, series = {Proceedings of Machine Learning Research}, address = {New York, New York, USA}, month = {20--22 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v48/grosse16.pdf}, url = {https://proceedings.mlr.press/v48/grosse16.html}, abstract = {Second-order optimization methods such as natural gradient descent have the potential to speed up training of neural networks by correcting for the curvature of the loss function. Unfortunately, the exact natural gradient is impractical to compute for large models, and most approximations either require an expensive iterative procedure or make crude approximations to the curvature. We present Kronecker Factors for Convolution (KFC), a tractable approximation to the Fisher matrix for convolutional networks based on a structured probabilistic model for the distribution over backpropagated derivatives. Similarly to the recently proposed Kronecker-Factored Approximate Curvature (K-FAC), each block of the approximate Fisher matrix decomposes as the Kronecker product of small matrices, allowing for efficient inversion. KFC captures important curvature information while still yielding comparably efficient updates to stochastic gradient descent (SGD). We show that the updates are invariant to commonly used reparameterizations, such as centering of the activations. In our experiments, approximate natural gradient descent with KFC was able to train convolutional networks several times faster than carefully tuned SGD. Furthermore, it was able to train the networks in 10-20 times fewer iterations than SGD, suggesting its potential applicability in a distributed setting.} }
Endnote
%0 Conference Paper %T A Kronecker-factored approximate Fisher matrix for convolution layers %A Roger Grosse %A James Martens %B Proceedings of The 33rd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2016 %E Maria Florina Balcan %E Kilian Q. Weinberger %F pmlr-v48-grosse16 %I PMLR %P 573--582 %U https://proceedings.mlr.press/v48/grosse16.html %V 48 %X Second-order optimization methods such as natural gradient descent have the potential to speed up training of neural networks by correcting for the curvature of the loss function. Unfortunately, the exact natural gradient is impractical to compute for large models, and most approximations either require an expensive iterative procedure or make crude approximations to the curvature. We present Kronecker Factors for Convolution (KFC), a tractable approximation to the Fisher matrix for convolutional networks based on a structured probabilistic model for the distribution over backpropagated derivatives. Similarly to the recently proposed Kronecker-Factored Approximate Curvature (K-FAC), each block of the approximate Fisher matrix decomposes as the Kronecker product of small matrices, allowing for efficient inversion. KFC captures important curvature information while still yielding comparably efficient updates to stochastic gradient descent (SGD). We show that the updates are invariant to commonly used reparameterizations, such as centering of the activations. In our experiments, approximate natural gradient descent with KFC was able to train convolutional networks several times faster than carefully tuned SGD. Furthermore, it was able to train the networks in 10-20 times fewer iterations than SGD, suggesting its potential applicability in a distributed setting.
RIS
TY - CPAPER TI - A Kronecker-factored approximate Fisher matrix for convolution layers AU - Roger Grosse AU - James Martens BT - Proceedings of The 33rd International Conference on Machine Learning DA - 2016/06/11 ED - Maria Florina Balcan ED - Kilian Q. Weinberger ID - pmlr-v48-grosse16 PB - PMLR DP - Proceedings of Machine Learning Research VL - 48 SP - 573 EP - 582 L1 - http://proceedings.mlr.press/v48/grosse16.pdf UR - https://proceedings.mlr.press/v48/grosse16.html AB - Second-order optimization methods such as natural gradient descent have the potential to speed up training of neural networks by correcting for the curvature of the loss function. Unfortunately, the exact natural gradient is impractical to compute for large models, and most approximations either require an expensive iterative procedure or make crude approximations to the curvature. We present Kronecker Factors for Convolution (KFC), a tractable approximation to the Fisher matrix for convolutional networks based on a structured probabilistic model for the distribution over backpropagated derivatives. Similarly to the recently proposed Kronecker-Factored Approximate Curvature (K-FAC), each block of the approximate Fisher matrix decomposes as the Kronecker product of small matrices, allowing for efficient inversion. KFC captures important curvature information while still yielding comparably efficient updates to stochastic gradient descent (SGD). We show that the updates are invariant to commonly used reparameterizations, such as centering of the activations. In our experiments, approximate natural gradient descent with KFC was able to train convolutional networks several times faster than carefully tuned SGD. Furthermore, it was able to train the networks in 10-20 times fewer iterations than SGD, suggesting its potential applicability in a distributed setting. ER -
APA
Grosse, R. & Martens, J.. (2016). A Kronecker-factored approximate Fisher matrix for convolution layers. Proceedings of The 33rd International Conference on Machine Learning, in Proceedings of Machine Learning Research 48:573-582 Available from https://proceedings.mlr.press/v48/grosse16.html.

Related Material