Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification

Yuting Zhang, Kibok Lee, Honglak Lee
Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:612-621, 2016.

Abstract

Unsupervised learning and supervised learning are key research topics in deep learning. However, as high-capacity supervised neural networks trained with a large amount of labels have achieved remarkable success in many computer vision tasks, the availability of large-scale labeled images reduced the significance of unsupervised learning. Inspired by the recent trend toward revisiting the importance of unsupervised learning, we investigate joint supervised and unsupervised learning in a large-scale setting by augmenting existing neural networks with decoding pathways for reconstruction. First, we demonstrate that the intermediate activations of pretrained large-scale classification networks preserve almost all the information of input images except a portion of local spatial details. Then, by end-to-end training of the entire augmented architecture with the reconstructive objective, we show improvement of the network performance for supervised tasks. We evaluate several variants of autoencoders, including the recently proposed “what-where" autoencoder that uses the encoder pooling switches, to study the importance of the architecture design. Taking the 16-layer VGGNet trained under the ImageNet ILSVRC 2012 protocol as a strong baseline for image classification, our methods improve the validation-set accuracy by a noticeable margin.

Cite this Paper


BibTeX
@InProceedings{pmlr-v48-zhangc16, title = {Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification}, author = {Zhang, Yuting and Lee, Kibok and Lee, Honglak}, booktitle = {Proceedings of The 33rd International Conference on Machine Learning}, pages = {612--621}, year = {2016}, editor = {Balcan, Maria Florina and Weinberger, Kilian Q.}, volume = {48}, series = {Proceedings of Machine Learning Research}, address = {New York, New York, USA}, month = {20--22 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v48/zhangc16.pdf}, url = {https://proceedings.mlr.press/v48/zhangc16.html}, abstract = {Unsupervised learning and supervised learning are key research topics in deep learning. However, as high-capacity supervised neural networks trained with a large amount of labels have achieved remarkable success in many computer vision tasks, the availability of large-scale labeled images reduced the significance of unsupervised learning. Inspired by the recent trend toward revisiting the importance of unsupervised learning, we investigate joint supervised and unsupervised learning in a large-scale setting by augmenting existing neural networks with decoding pathways for reconstruction. First, we demonstrate that the intermediate activations of pretrained large-scale classification networks preserve almost all the information of input images except a portion of local spatial details. Then, by end-to-end training of the entire augmented architecture with the reconstructive objective, we show improvement of the network performance for supervised tasks. We evaluate several variants of autoencoders, including the recently proposed “what-where" autoencoder that uses the encoder pooling switches, to study the importance of the architecture design. Taking the 16-layer VGGNet trained under the ImageNet ILSVRC 2012 protocol as a strong baseline for image classification, our methods improve the validation-set accuracy by a noticeable margin.} }
Endnote
%0 Conference Paper %T Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification %A Yuting Zhang %A Kibok Lee %A Honglak Lee %B Proceedings of The 33rd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2016 %E Maria Florina Balcan %E Kilian Q. Weinberger %F pmlr-v48-zhangc16 %I PMLR %P 612--621 %U https://proceedings.mlr.press/v48/zhangc16.html %V 48 %X Unsupervised learning and supervised learning are key research topics in deep learning. However, as high-capacity supervised neural networks trained with a large amount of labels have achieved remarkable success in many computer vision tasks, the availability of large-scale labeled images reduced the significance of unsupervised learning. Inspired by the recent trend toward revisiting the importance of unsupervised learning, we investigate joint supervised and unsupervised learning in a large-scale setting by augmenting existing neural networks with decoding pathways for reconstruction. First, we demonstrate that the intermediate activations of pretrained large-scale classification networks preserve almost all the information of input images except a portion of local spatial details. Then, by end-to-end training of the entire augmented architecture with the reconstructive objective, we show improvement of the network performance for supervised tasks. We evaluate several variants of autoencoders, including the recently proposed “what-where" autoencoder that uses the encoder pooling switches, to study the importance of the architecture design. Taking the 16-layer VGGNet trained under the ImageNet ILSVRC 2012 protocol as a strong baseline for image classification, our methods improve the validation-set accuracy by a noticeable margin.
RIS
TY - CPAPER TI - Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification AU - Yuting Zhang AU - Kibok Lee AU - Honglak Lee BT - Proceedings of The 33rd International Conference on Machine Learning DA - 2016/06/11 ED - Maria Florina Balcan ED - Kilian Q. Weinberger ID - pmlr-v48-zhangc16 PB - PMLR DP - Proceedings of Machine Learning Research VL - 48 SP - 612 EP - 621 L1 - http://proceedings.mlr.press/v48/zhangc16.pdf UR - https://proceedings.mlr.press/v48/zhangc16.html AB - Unsupervised learning and supervised learning are key research topics in deep learning. However, as high-capacity supervised neural networks trained with a large amount of labels have achieved remarkable success in many computer vision tasks, the availability of large-scale labeled images reduced the significance of unsupervised learning. Inspired by the recent trend toward revisiting the importance of unsupervised learning, we investigate joint supervised and unsupervised learning in a large-scale setting by augmenting existing neural networks with decoding pathways for reconstruction. First, we demonstrate that the intermediate activations of pretrained large-scale classification networks preserve almost all the information of input images except a portion of local spatial details. Then, by end-to-end training of the entire augmented architecture with the reconstructive objective, we show improvement of the network performance for supervised tasks. We evaluate several variants of autoencoders, including the recently proposed “what-where" autoencoder that uses the encoder pooling switches, to study the importance of the architecture design. Taking the 16-layer VGGNet trained under the ImageNet ILSVRC 2012 protocol as a strong baseline for image classification, our methods improve the validation-set accuracy by a noticeable margin. ER -
APA
Zhang, Y., Lee, K. & Lee, H.. (2016). Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification. Proceedings of The 33rd International Conference on Machine Learning, in Proceedings of Machine Learning Research 48:612-621 Available from https://proceedings.mlr.press/v48/zhangc16.html.

Related Material