Sign rank versus VC dimension

Noga Alon, Shay Moran, Amir Yehudayoff
29th Annual Conference on Learning Theory, PMLR 49:47-80, 2016.

Abstract

This work studies the maximum possible sign rank of N \times N sign matrices with a given VC dimension d. For d=1, this maximum is three. For d=2, this maximum is \tildeΘ(N^1/2). For d >2, similar but slightly less accurate statements hold. Our lower bounds improve over previous ones by Ben-David et al. and can be interpreted as exhibiting a weakness of kernel-based classifiers. Our upper bounds, on the other hand, can be interpreted as exhibiting the universality of kernel-based classifiers. The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension – answering a question of Frankl from ’89, and (ii) design an efficient algorithm that provides an O(N/\log(N)) multiplicative approximation for the sign rank (computing the sign rank is equivalent to the existential theory of the reals). We also observe a general connection between sign rank and spectral gaps which is based on Forster’s argument. Consider the N \times N adjacency matrix of a ∆regular graph with a second eigenvalue of absolute value λand ∆≤N/2. We show that the sign rank of the signed version of this matrix is at least ∆/λ. We use this connection to prove the existence of a maximum class C⊆{\pm 1}^N with VC dimension 2 and sign rank \tildeΘ(N^1/2). This answers a question of Ben-David et al. regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.

Cite this Paper


BibTeX
@InProceedings{pmlr-v49-alon16, title = {Sign rank versus {VC} dimension}, author = {Alon, Noga and Moran, Shay and Yehudayoff, Amir}, booktitle = {29th Annual Conference on Learning Theory}, pages = {47--80}, year = {2016}, editor = {Feldman, Vitaly and Rakhlin, Alexander and Shamir, Ohad}, volume = {49}, series = {Proceedings of Machine Learning Research}, address = {Columbia University, New York, New York, USA}, month = {23--26 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v49/alon16.pdf}, url = {https://proceedings.mlr.press/v49/alon16.html}, abstract = {This work studies the maximum possible sign rank of N \times N sign matrices with a given VC dimension d. For d=1, this maximum is three. For d=2, this maximum is \tildeΘ(N^1/2). For d >2, similar but slightly less accurate statements hold. Our lower bounds improve over previous ones by Ben-David et al. and can be interpreted as exhibiting a weakness of kernel-based classifiers. Our upper bounds, on the other hand, can be interpreted as exhibiting the universality of kernel-based classifiers. The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension – answering a question of Frankl from ’89, and (ii) design an efficient algorithm that provides an O(N/\log(N)) multiplicative approximation for the sign rank (computing the sign rank is equivalent to the existential theory of the reals). We also observe a general connection between sign rank and spectral gaps which is based on Forster’s argument. Consider the N \times N adjacency matrix of a ∆regular graph with a second eigenvalue of absolute value λand ∆≤N/2. We show that the sign rank of the signed version of this matrix is at least ∆/λ. We use this connection to prove the existence of a maximum class C⊆{\pm 1}^N with VC dimension 2 and sign rank \tildeΘ(N^1/2). This answers a question of Ben-David et al. regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.} }
Endnote
%0 Conference Paper %T Sign rank versus VC dimension %A Noga Alon %A Shay Moran %A Amir Yehudayoff %B 29th Annual Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2016 %E Vitaly Feldman %E Alexander Rakhlin %E Ohad Shamir %F pmlr-v49-alon16 %I PMLR %P 47--80 %U https://proceedings.mlr.press/v49/alon16.html %V 49 %X This work studies the maximum possible sign rank of N \times N sign matrices with a given VC dimension d. For d=1, this maximum is three. For d=2, this maximum is \tildeΘ(N^1/2). For d >2, similar but slightly less accurate statements hold. Our lower bounds improve over previous ones by Ben-David et al. and can be interpreted as exhibiting a weakness of kernel-based classifiers. Our upper bounds, on the other hand, can be interpreted as exhibiting the universality of kernel-based classifiers. The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension – answering a question of Frankl from ’89, and (ii) design an efficient algorithm that provides an O(N/\log(N)) multiplicative approximation for the sign rank (computing the sign rank is equivalent to the existential theory of the reals). We also observe a general connection between sign rank and spectral gaps which is based on Forster’s argument. Consider the N \times N adjacency matrix of a ∆regular graph with a second eigenvalue of absolute value λand ∆≤N/2. We show that the sign rank of the signed version of this matrix is at least ∆/λ. We use this connection to prove the existence of a maximum class C⊆{\pm 1}^N with VC dimension 2 and sign rank \tildeΘ(N^1/2). This answers a question of Ben-David et al. regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.
RIS
TY - CPAPER TI - Sign rank versus VC dimension AU - Noga Alon AU - Shay Moran AU - Amir Yehudayoff BT - 29th Annual Conference on Learning Theory DA - 2016/06/06 ED - Vitaly Feldman ED - Alexander Rakhlin ED - Ohad Shamir ID - pmlr-v49-alon16 PB - PMLR DP - Proceedings of Machine Learning Research VL - 49 SP - 47 EP - 80 L1 - http://proceedings.mlr.press/v49/alon16.pdf UR - https://proceedings.mlr.press/v49/alon16.html AB - This work studies the maximum possible sign rank of N \times N sign matrices with a given VC dimension d. For d=1, this maximum is three. For d=2, this maximum is \tildeΘ(N^1/2). For d >2, similar but slightly less accurate statements hold. Our lower bounds improve over previous ones by Ben-David et al. and can be interpreted as exhibiting a weakness of kernel-based classifiers. Our upper bounds, on the other hand, can be interpreted as exhibiting the universality of kernel-based classifiers. The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension – answering a question of Frankl from ’89, and (ii) design an efficient algorithm that provides an O(N/\log(N)) multiplicative approximation for the sign rank (computing the sign rank is equivalent to the existential theory of the reals). We also observe a general connection between sign rank and spectral gaps which is based on Forster’s argument. Consider the N \times N adjacency matrix of a ∆regular graph with a second eigenvalue of absolute value λand ∆≤N/2. We show that the sign rank of the signed version of this matrix is at least ∆/λ. We use this connection to prove the existence of a maximum class C⊆{\pm 1}^N with VC dimension 2 and sign rank \tildeΘ(N^1/2). This answers a question of Ben-David et al. regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics. ER -
APA
Alon, N., Moran, S. & Yehudayoff, A.. (2016). Sign rank versus VC dimension. 29th Annual Conference on Learning Theory, in Proceedings of Machine Learning Research 49:47-80 Available from https://proceedings.mlr.press/v49/alon16.html.

Related Material