[edit]
Inapproximability of VC Dimension and Littlestone’s Dimension
Proceedings of the 2017 Conference on Learning Theory, PMLR 65:1432-1460, 2017.
Abstract
We study the complexity of computing the VC Dimension and Littlestone’s Dimension. Given an explicit description of a finite universe and a concept class (a binary matrix whose (x,C)-th entry is 1 iff element x belongs to concept C), both can be computed exactly in quasi-polynomial time (nO(logn)). Assuming the randomized Exponential Time Hypothesis (ETH), we prove nearly matching lower bounds on the running time, that hold even for \em approximation algorithms.