Solving SDPs for synchronization and MaxCut problems via the Grothendieck inequality

Song Mei, Theodor Misiakiewicz, Andrea Montanari, Roberto Imbuzeiro Oliveira
Proceedings of the 2017 Conference on Learning Theory, PMLR 65:1476-1515, 2017.

Abstract

A number of statistical estimation problems can be addressed by semidefinite programs (SDP). While SDPs are solvable in polynomial time using interior point methods, in practice generic SDP solvers do not scale well to high-dimensional problems. In order to cope with this problem, Burer and Monteiro proposed a non-convex rank-constrained formulation, which has good performance in practice but is still poorly understood theoretically. In this paper we study the rank-constrained version of SDPs arising in MaxCut and in $\mathbb Z_2$ and $\rm SO(d)$ synchronization problems. We establish a Grothendieck-type inequality that proves that all the local maxima and dangerous saddle points are within a small multiplicative gap from the global maximum. We use this structural information to prove that SDPs can be solved within a known accuracy, by applying the Riemannian trust-region method to this non-convex problem, while constraining the rank to be of order one. For the MaxCut problem, our inequality implies that any local maximizer of the rank-constrained SDP provides a $(1 - 1/(k-1)) \times 0.878$ approximation of the MaxCut, when the rank is fixed to $k$. We then apply our results to data matrices generated according to the Gaussian $\mathbb Z_2$ synchronization problem, and the two-groups stochastic block model with large bounded degree. We prove that the error achieved by local maximizers undergoes a phase transition at the same threshold as for information-theoretically optimal methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v65-mei17a, title = {Solving SDPs for synchronization and MaxCut problems via the Grothendieck inequality}, author = {Mei, Song and Misiakiewicz, Theodor and Montanari, Andrea and Oliveira, Roberto Imbuzeiro}, booktitle = {Proceedings of the 2017 Conference on Learning Theory}, pages = {1476--1515}, year = {2017}, editor = {Kale, Satyen and Shamir, Ohad}, volume = {65}, series = {Proceedings of Machine Learning Research}, month = {07--10 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v65/mei17a/mei17a.pdf}, url = {https://proceedings.mlr.press/v65/mei17a.html}, abstract = { A number of statistical estimation problems can be addressed by semidefinite programs (SDP). While SDPs are solvable in polynomial time using interior point methods, in practice generic SDP solvers do not scale well to high-dimensional problems. In order to cope with this problem, Burer and Monteiro proposed a non-convex rank-constrained formulation, which has good performance in practice but is still poorly understood theoretically. In this paper we study the rank-constrained version of SDPs arising in MaxCut and in $\mathbb Z_2$ and $\rm SO(d)$ synchronization problems. We establish a Grothendieck-type inequality that proves that all the local maxima and dangerous saddle points are within a small multiplicative gap from the global maximum. We use this structural information to prove that SDPs can be solved within a known accuracy, by applying the Riemannian trust-region method to this non-convex problem, while constraining the rank to be of order one. For the MaxCut problem, our inequality implies that any local maximizer of the rank-constrained SDP provides a $(1 - 1/(k-1)) \times 0.878$ approximation of the MaxCut, when the rank is fixed to $k$. We then apply our results to data matrices generated according to the Gaussian $\mathbb Z_2$ synchronization problem, and the two-groups stochastic block model with large bounded degree. We prove that the error achieved by local maximizers undergoes a phase transition at the same threshold as for information-theoretically optimal methods.} }
Endnote
%0 Conference Paper %T Solving SDPs for synchronization and MaxCut problems via the Grothendieck inequality %A Song Mei %A Theodor Misiakiewicz %A Andrea Montanari %A Roberto Imbuzeiro Oliveira %B Proceedings of the 2017 Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2017 %E Satyen Kale %E Ohad Shamir %F pmlr-v65-mei17a %I PMLR %P 1476--1515 %U https://proceedings.mlr.press/v65/mei17a.html %V 65 %X A number of statistical estimation problems can be addressed by semidefinite programs (SDP). While SDPs are solvable in polynomial time using interior point methods, in practice generic SDP solvers do not scale well to high-dimensional problems. In order to cope with this problem, Burer and Monteiro proposed a non-convex rank-constrained formulation, which has good performance in practice but is still poorly understood theoretically. In this paper we study the rank-constrained version of SDPs arising in MaxCut and in $\mathbb Z_2$ and $\rm SO(d)$ synchronization problems. We establish a Grothendieck-type inequality that proves that all the local maxima and dangerous saddle points are within a small multiplicative gap from the global maximum. We use this structural information to prove that SDPs can be solved within a known accuracy, by applying the Riemannian trust-region method to this non-convex problem, while constraining the rank to be of order one. For the MaxCut problem, our inequality implies that any local maximizer of the rank-constrained SDP provides a $(1 - 1/(k-1)) \times 0.878$ approximation of the MaxCut, when the rank is fixed to $k$. We then apply our results to data matrices generated according to the Gaussian $\mathbb Z_2$ synchronization problem, and the two-groups stochastic block model with large bounded degree. We prove that the error achieved by local maximizers undergoes a phase transition at the same threshold as for information-theoretically optimal methods.
APA
Mei, S., Misiakiewicz, T., Montanari, A. & Oliveira, R.I.. (2017). Solving SDPs for synchronization and MaxCut problems via the Grothendieck inequality. Proceedings of the 2017 Conference on Learning Theory, in Proceedings of Machine Learning Research 65:1476-1515 Available from https://proceedings.mlr.press/v65/mei17a.html.

Related Material