Fundamental Limits of Weak Recovery with Applications to Phase Retrieval

Marco Mondelli, Andrea Montanari
Proceedings of the 31st Conference On Learning Theory, PMLR 75:1445-1450, 2018.

Abstract

In phase retrieval we want to recover an unknown signal $\boldsymbol x\in\mathbb C^d$ from $n$ quadratic measurements of the form $y_i = |⟨\boldsymbol a_i,\boldsymbol x⟩|^2+w_i$ where $\boldsymbol a_i\in \mathbb C^d$ are known sensing vectors and $w_i$ is measurement noise. We ask the following \emph{weak recovery} question: what is the minimum number of measurements $n$ needed to produce an estimator $\hat{\boldsymbol x}(\boldsymbol y)$ that is positively correlated with the signal $\boldsymbol x$? We consider the case of Gaussian vectors $\boldsymbol a_i$. We prove that – in the high-dimensional limit – a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For $n\le d-o(d)$ no estimator can do significantly better than random and achieve a strictly positive correlation. For $n\ge d+o(d)$ a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theory arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper and lower bound generalize beyond phase retrieval to measurements $y_i$ produced according to a generalized linear model. As a byproduct of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm.

Cite this Paper


BibTeX
@InProceedings{pmlr-v75-mondelli18a, title = {Fundamental Limits of Weak Recovery with Applications to Phase Retrieval}, author = {Mondelli, Marco and Montanari, Andrea}, booktitle = {Proceedings of the 31st Conference On Learning Theory}, pages = {1445--1450}, year = {2018}, editor = {Bubeck, Sébastien and Perchet, Vianney and Rigollet, Philippe}, volume = {75}, series = {Proceedings of Machine Learning Research}, month = {06--09 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v75/mondelli18a/mondelli18a.pdf}, url = {https://proceedings.mlr.press/v75/mondelli18a.html}, abstract = {In phase retrieval we want to recover an unknown signal $\boldsymbol x\in\mathbb C^d$ from $n$ quadratic measurements of the form $y_i = |⟨\boldsymbol a_i,\boldsymbol x⟩|^2+w_i$ where $\boldsymbol a_i\in \mathbb C^d$ are known sensing vectors and $w_i$ is measurement noise. We ask the following \emph{weak recovery} question: what is the minimum number of measurements $n$ needed to produce an estimator $\hat{\boldsymbol x}(\boldsymbol y)$ that is positively correlated with the signal $\boldsymbol x$? We consider the case of Gaussian vectors $\boldsymbol a_i$. We prove that – in the high-dimensional limit – a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For $n\le d-o(d)$ no estimator can do significantly better than random and achieve a strictly positive correlation. For $n\ge d+o(d)$ a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theory arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper and lower bound generalize beyond phase retrieval to measurements $y_i$ produced according to a generalized linear model. As a byproduct of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm. } }
Endnote
%0 Conference Paper %T Fundamental Limits of Weak Recovery with Applications to Phase Retrieval %A Marco Mondelli %A Andrea Montanari %B Proceedings of the 31st Conference On Learning Theory %C Proceedings of Machine Learning Research %D 2018 %E Sébastien Bubeck %E Vianney Perchet %E Philippe Rigollet %F pmlr-v75-mondelli18a %I PMLR %P 1445--1450 %U https://proceedings.mlr.press/v75/mondelli18a.html %V 75 %X In phase retrieval we want to recover an unknown signal $\boldsymbol x\in\mathbb C^d$ from $n$ quadratic measurements of the form $y_i = |⟨\boldsymbol a_i,\boldsymbol x⟩|^2+w_i$ where $\boldsymbol a_i\in \mathbb C^d$ are known sensing vectors and $w_i$ is measurement noise. We ask the following \emph{weak recovery} question: what is the minimum number of measurements $n$ needed to produce an estimator $\hat{\boldsymbol x}(\boldsymbol y)$ that is positively correlated with the signal $\boldsymbol x$? We consider the case of Gaussian vectors $\boldsymbol a_i$. We prove that – in the high-dimensional limit – a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For $n\le d-o(d)$ no estimator can do significantly better than random and achieve a strictly positive correlation. For $n\ge d+o(d)$ a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theory arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper and lower bound generalize beyond phase retrieval to measurements $y_i$ produced according to a generalized linear model. As a byproduct of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm.
APA
Mondelli, M. & Montanari, A.. (2018). Fundamental Limits of Weak Recovery with Applications to Phase Retrieval. Proceedings of the 31st Conference On Learning Theory, in Proceedings of Machine Learning Research 75:1445-1450 Available from https://proceedings.mlr.press/v75/mondelli18a.html.

Related Material