[edit]
Multi-view Clustering with Adaptively Learned Graph
Proceedings of the Ninth Asian Conference on Machine Learning, PMLR 77:113-128, 2017.
Abstract
Multi-view clustering, which aims to improve the clustering performance by exploring the data’s multiple representations, has become an important research direction. Graph based methods have been widely studied and achieve promising performance for multi-view clustering. However, most existing multi-view graph based methods perform clustering on the fixed input graphs, and the results are dependent on the quality of input graphs. In this paper, instead of fixing the input graphs, we propose Multi-view clustering with Adaptively Learned Graph (MALG), learning a new common similarity matrix. In our model, we not only consider the importance of multiple graphs from view level, but also focus on the performance of similarities within a view from sample-pair level. Sample-pair-specific weights are introduced to exploit the connection across views in more depth. In addition, the obtained optimal graph can be partitioned into specific clusters directly, according to its connected components. Experimental results on toy and real-world datasets demonstrate the efficacy of the proposed algorithm.