[edit]
Model-Free Linear Quadratic Control via Reduction to Expert Prediction
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, PMLR 89:3108-3117, 2019.
Abstract
Model-free approaches for reinforcement learning (RL) and continuous control find policies based only on past states and rewards, without fitting a model of the system dynamics. They are appealing as they are general purpose and easy to implement; however, they also come with fewer theoretical guarantees than model-based RL. In this work, we present a new model-free algorithm for controlling linear quadratic (LQ) systems, and show that its regret scales as $O(T^{\xi+2/3})$ for any small $\xi>0$ if time horizon satisfies $T>C^{1/\xi}$ for a constant $C$. The algorithm is based on a reduction of control of Markov decision processes to an expert prediction problem. In practice, it corresponds to a variant of policy iteration with forced exploration, where the policy in each phase is greedy with respect to the average of all previous value functions. This is the first model-free algorithm for adaptive control of LQ systems that provably achieves sublinear regret and has a polynomial computation cost. Empirically, our algorithm dramatically outperforms standard policy iteration, but performs worse than a model-based approach.