Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

Hadrien Hendrikx, Francis Bach, Laurent Massoulie
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, PMLR 89:897-906, 2019.

Abstract

In this paper, we study the problem of minimizing a sum of smooth and strongly convex functions split over the nodes of a network in a decentralized fashion. We propose the algorithm ESDACD, a decentralized accelerated algorithm that only requires local synchrony. Its rate depends on the condition number $\kappa$ of the local functions as well as the network topology and delays. Under mild assumptions on the topology of the graph, ESDACD takes a time $O((\tau_{\max} + \Delta_{\max})\sqrt{{\kappa}/{\gamma}}\ln(\epsilon^{-1}))$ to reach a precision $\epsilon$ where $\gamma$ is the spectral gap of the graph, $\tau_{\max}$ the maximum communication delay and $\Delta_{\max}$ the maximum computation time. Therefore, it matches the rate of SSDA, which is optimal when $\tau_{\max} = \Omega\left(\Delta_{\max}\right)$. Applying ESDACD to quadratic local functions leads to an accelerated randomized gossip algorithm of rate $O( \sqrt{\theta_{\rm gossip}/n})$ where $\theta_{\rm gossip}$ is the rate of the standard randomized gossip. To the best of our knowledge, it is the first asynchronous algorithm with a provably improved rate of convergence of the second moment of the error. We illustrate these results with experiments in idealized settings.

Cite this Paper


BibTeX
@InProceedings{pmlr-v89-hendrikx19a, title = {Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives}, author = {Hendrikx, Hadrien and Bach, Francis and Massoulie, Laurent}, booktitle = {Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics}, pages = {897--906}, year = {2019}, editor = {Chaudhuri, Kamalika and Sugiyama, Masashi}, volume = {89}, series = {Proceedings of Machine Learning Research}, month = {16--18 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v89/hendrikx19a/hendrikx19a.pdf}, url = {https://proceedings.mlr.press/v89/hendrikx19a.html}, abstract = {In this paper, we study the problem of minimizing a sum of smooth and strongly convex functions split over the nodes of a network in a decentralized fashion. We propose the algorithm ESDACD, a decentralized accelerated algorithm that only requires local synchrony. Its rate depends on the condition number $\kappa$ of the local functions as well as the network topology and delays. Under mild assumptions on the topology of the graph, ESDACD takes a time $O((\tau_{\max} + \Delta_{\max})\sqrt{{\kappa}/{\gamma}}\ln(\epsilon^{-1}))$ to reach a precision $\epsilon$ where $\gamma$ is the spectral gap of the graph, $\tau_{\max}$ the maximum communication delay and $\Delta_{\max}$ the maximum computation time. Therefore, it matches the rate of SSDA, which is optimal when $\tau_{\max} = \Omega\left(\Delta_{\max}\right)$. Applying ESDACD to quadratic local functions leads to an accelerated randomized gossip algorithm of rate $O( \sqrt{\theta_{\rm gossip}/n})$ where $\theta_{\rm gossip}$ is the rate of the standard randomized gossip. To the best of our knowledge, it is the first asynchronous algorithm with a provably improved rate of convergence of the second moment of the error. We illustrate these results with experiments in idealized settings.} }
Endnote
%0 Conference Paper %T Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives %A Hadrien Hendrikx %A Francis Bach %A Laurent Massoulie %B Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Masashi Sugiyama %F pmlr-v89-hendrikx19a %I PMLR %P 897--906 %U https://proceedings.mlr.press/v89/hendrikx19a.html %V 89 %X In this paper, we study the problem of minimizing a sum of smooth and strongly convex functions split over the nodes of a network in a decentralized fashion. We propose the algorithm ESDACD, a decentralized accelerated algorithm that only requires local synchrony. Its rate depends on the condition number $\kappa$ of the local functions as well as the network topology and delays. Under mild assumptions on the topology of the graph, ESDACD takes a time $O((\tau_{\max} + \Delta_{\max})\sqrt{{\kappa}/{\gamma}}\ln(\epsilon^{-1}))$ to reach a precision $\epsilon$ where $\gamma$ is the spectral gap of the graph, $\tau_{\max}$ the maximum communication delay and $\Delta_{\max}$ the maximum computation time. Therefore, it matches the rate of SSDA, which is optimal when $\tau_{\max} = \Omega\left(\Delta_{\max}\right)$. Applying ESDACD to quadratic local functions leads to an accelerated randomized gossip algorithm of rate $O( \sqrt{\theta_{\rm gossip}/n})$ where $\theta_{\rm gossip}$ is the rate of the standard randomized gossip. To the best of our knowledge, it is the first asynchronous algorithm with a provably improved rate of convergence of the second moment of the error. We illustrate these results with experiments in idealized settings.
APA
Hendrikx, H., Bach, F. & Massoulie, L.. (2019). Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives. Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 89:897-906 Available from https://proceedings.mlr.press/v89/hendrikx19a.html.

Related Material