[edit]
Classification using margin pursuit
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, PMLR 89:712-720, 2019.
Abstract
In this work, we study a new approach to optimizing the margin distribution realized by binary classifiers, in which the learner searches the hypothesis space in such a way that a pre-set margin level ends up being a distribution-robust estimator of the margin location. This procedure is easily implemented using gradient descent, and admits finite-sample bounds on the excess risk under unbounded inputs, yielding competitive rates under mild assumptions. Empirical tests on real-world benchmark data reinforce the basic principles highlighted by the theory.