Conformal prediction in manifold learning

Alexander Kuleshov, Alexander Bernstein, Evgeny Burnaev
Proceedings of the Seventh Workshop on Conformal and Probabilistic Prediction and Applications, PMLR 91:234-253, 2018.

Abstract

The paper presents a geometrically motivated view on conformal prediction applied to nonlinear multi-output regression tasks for obtaining valid measure of accuracy of Manifold Learning Regression algorithms. A considered regression task is to estimate an unknown smooth mapping $\mathbf{f}$ from $q$-dimensional inputs $\mathbf{x}\in \mathbf{X}$ to $m$-dimensional outputs $\mathbf{y} = \mathbf{f}(\mathbf{x})$ based on training dataset $\mathbf{Z}_{(n)}$ consisting of ``input-output' pairs $\{Z_i = (\mathbf{x}_i, \mathbf{y}_i = \mathbf{f}(\mathbf{x}_i))^{\mathrm{T}}, i = 1, 2, \ldots , n\}$. Manifold Learning Regression (MLR) algorithm solves this task using Manifold learning technique. At first, unknown $q$-dimensional Regression manifold $\mathbf{M}(\mathbf{f}) = \{(\mathbf{x}, \mathbf{f}(\mathbf{x}))^{\mathrm{T}}\in\mathbb{R}^{q+m}: \mathbf{x}\in \mathbf{X}\subset \mathbb{R}^{q} \}$, embedded in ambient $(q+m)$-dimensional space, is estimated from the training data $\mathbf{Z}_{(n)}$, sampled from this manifold. The constructed estimator $\mathbf{M}_{MLR}$, which is also $q$-dimensional manifold embedded in ambient space $\mathbb{R}^{q+m}$, is close to $\mathbf{M}$ in terms of Hausdorff distance. After that, an estimator $\mathbf{f}_{MLR}$ of the unknown function $\mathbf{f}$, mapping arbitrary input $\mathbf{x}\in \mathbf{X}$ to output $\mathbf{f}_{MLR}(\mathbf{x})$, is constructed as the solution to the equation $\mathbf{M}(\mathbf{f}_{MLR}) = \mathbf{M}_{MLR}$. Conformal prediction allows constructing a prediction region for an unknown output $\mathbf{y} = \mathbf{f}(\mathbf{x})$ at Out-of-Sample input point $\mathbf{x}$ for a given confidence level using given nonconformity measure, characterizing to which extent an example $Z = (\mathbf{x}, \mathbf{y})^{\mathrm{T}}$ is different from examples in the known dataset $\mathbf{Z}_{(n)}$. The paper proposes a new nonconformity measure based on MLR estimators using an analog of Bregman distance.

Cite this Paper


BibTeX
@InProceedings{pmlr-v91-kuleshov18a, title = {Conformal prediction in manifold learning}, author = {Kuleshov, Alexander and Bernstein, Alexander and Burnaev, Evgeny}, booktitle = {Proceedings of the Seventh Workshop on Conformal and Probabilistic Prediction and Applications}, pages = {234--253}, year = {2018}, editor = {Gammerman, Alex and Vovk, Vladimir and Luo, Zhiyuan and Smirnov, Evgueni and Peeters, Ralf}, volume = {91}, series = {Proceedings of Machine Learning Research}, month = {11--13 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v91/kuleshov18a/kuleshov18a.pdf}, url = {https://proceedings.mlr.press/v91/kuleshov18a.html}, abstract = {The paper presents a geometrically motivated view on conformal prediction applied to nonlinear multi-output regression tasks for obtaining valid measure of accuracy of Manifold Learning Regression algorithms. A considered regression task is to estimate an unknown smooth mapping $\mathbf{f}$ from $q$-dimensional inputs $\mathbf{x}\in \mathbf{X}$ to $m$-dimensional outputs $\mathbf{y} = \mathbf{f}(\mathbf{x})$ based on training dataset $\mathbf{Z}_{(n)}$ consisting of ``input-output' pairs $\{Z_i = (\mathbf{x}_i, \mathbf{y}_i = \mathbf{f}(\mathbf{x}_i))^{\mathrm{T}}, i = 1, 2, \ldots , n\}$. Manifold Learning Regression (MLR) algorithm solves this task using Manifold learning technique. At first, unknown $q$-dimensional Regression manifold $\mathbf{M}(\mathbf{f}) = \{(\mathbf{x}, \mathbf{f}(\mathbf{x}))^{\mathrm{T}}\in\mathbb{R}^{q+m}: \mathbf{x}\in \mathbf{X}\subset \mathbb{R}^{q} \}$, embedded in ambient $(q+m)$-dimensional space, is estimated from the training data $\mathbf{Z}_{(n)}$, sampled from this manifold. The constructed estimator $\mathbf{M}_{MLR}$, which is also $q$-dimensional manifold embedded in ambient space $\mathbb{R}^{q+m}$, is close to $\mathbf{M}$ in terms of Hausdorff distance. After that, an estimator $\mathbf{f}_{MLR}$ of the unknown function $\mathbf{f}$, mapping arbitrary input $\mathbf{x}\in \mathbf{X}$ to output $\mathbf{f}_{MLR}(\mathbf{x})$, is constructed as the solution to the equation $\mathbf{M}(\mathbf{f}_{MLR}) = \mathbf{M}_{MLR}$. Conformal prediction allows constructing a prediction region for an unknown output $\mathbf{y} = \mathbf{f}(\mathbf{x})$ at Out-of-Sample input point $\mathbf{x}$ for a given confidence level using given nonconformity measure, characterizing to which extent an example $Z = (\mathbf{x}, \mathbf{y})^{\mathrm{T}}$ is different from examples in the known dataset $\mathbf{Z}_{(n)}$. The paper proposes a new nonconformity measure based on MLR estimators using an analog of Bregman distance.} }
Endnote
%0 Conference Paper %T Conformal prediction in manifold learning %A Alexander Kuleshov %A Alexander Bernstein %A Evgeny Burnaev %B Proceedings of the Seventh Workshop on Conformal and Probabilistic Prediction and Applications %C Proceedings of Machine Learning Research %D 2018 %E Alex Gammerman %E Vladimir Vovk %E Zhiyuan Luo %E Evgueni Smirnov %E Ralf Peeters %F pmlr-v91-kuleshov18a %I PMLR %P 234--253 %U https://proceedings.mlr.press/v91/kuleshov18a.html %V 91 %X The paper presents a geometrically motivated view on conformal prediction applied to nonlinear multi-output regression tasks for obtaining valid measure of accuracy of Manifold Learning Regression algorithms. A considered regression task is to estimate an unknown smooth mapping $\mathbf{f}$ from $q$-dimensional inputs $\mathbf{x}\in \mathbf{X}$ to $m$-dimensional outputs $\mathbf{y} = \mathbf{f}(\mathbf{x})$ based on training dataset $\mathbf{Z}_{(n)}$ consisting of ``input-output' pairs $\{Z_i = (\mathbf{x}_i, \mathbf{y}_i = \mathbf{f}(\mathbf{x}_i))^{\mathrm{T}}, i = 1, 2, \ldots , n\}$. Manifold Learning Regression (MLR) algorithm solves this task using Manifold learning technique. At first, unknown $q$-dimensional Regression manifold $\mathbf{M}(\mathbf{f}) = \{(\mathbf{x}, \mathbf{f}(\mathbf{x}))^{\mathrm{T}}\in\mathbb{R}^{q+m}: \mathbf{x}\in \mathbf{X}\subset \mathbb{R}^{q} \}$, embedded in ambient $(q+m)$-dimensional space, is estimated from the training data $\mathbf{Z}_{(n)}$, sampled from this manifold. The constructed estimator $\mathbf{M}_{MLR}$, which is also $q$-dimensional manifold embedded in ambient space $\mathbb{R}^{q+m}$, is close to $\mathbf{M}$ in terms of Hausdorff distance. After that, an estimator $\mathbf{f}_{MLR}$ of the unknown function $\mathbf{f}$, mapping arbitrary input $\mathbf{x}\in \mathbf{X}$ to output $\mathbf{f}_{MLR}(\mathbf{x})$, is constructed as the solution to the equation $\mathbf{M}(\mathbf{f}_{MLR}) = \mathbf{M}_{MLR}$. Conformal prediction allows constructing a prediction region for an unknown output $\mathbf{y} = \mathbf{f}(\mathbf{x})$ at Out-of-Sample input point $\mathbf{x}$ for a given confidence level using given nonconformity measure, characterizing to which extent an example $Z = (\mathbf{x}, \mathbf{y})^{\mathrm{T}}$ is different from examples in the known dataset $\mathbf{Z}_{(n)}$. The paper proposes a new nonconformity measure based on MLR estimators using an analog of Bregman distance.
APA
Kuleshov, A., Bernstein, A. & Burnaev, E.. (2018). Conformal prediction in manifold learning. Proceedings of the Seventh Workshop on Conformal and Probabilistic Prediction and Applications, in Proceedings of Machine Learning Research 91:234-253 Available from https://proceedings.mlr.press/v91/kuleshov18a.html.

Related Material