[edit]
Kernel regression in high dimensions: Refined analysis beyond double descent
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:649-657, 2021.
Abstract
In this paper, we provide a precise characterization of generalization properties of high dimensional kernel ridge regression across the under- and over-parameterized regimes, depending on whether the number of training data n exceeds the feature dimension d. By establishing a bias-variance decomposition of the expected excess risk, we show that, while the bias is (almost) independent of d and monotonically decreases with n, the variance depends on n,d and can be unimodal or monotonically decreasing under different regularization schemes. Our refined analysis goes beyond the double descent theory by showing that, depending on the data eigen-profile and the level of regularization, the kernel regression risk curve can be a double-descent-like, bell-shaped, or monotonic function of n. Experiments on synthetic and real data are conducted to support our theoretical findings.