Statistical-Computational Phase Transitions in Planted Models: The High-Dimensional Setting


Yudong Chen, Jiaming Xu ;
Proceedings of the 31st International Conference on Machine Learning, PMLR 32(2):244-252, 2014.


The planted models assume that a graph is generated from some unknown clusters by randomly placing edges between nodes according to their cluster memberships; the task is to recover the clusters given the graph. Special cases include planted clique, planted partition, planted densest subgraph and planted coloring. Of particular interest is the High-Dimensional setting where the number of clusters is allowed to grow with the number of nodes. We show that the space of model parameters can be partitioned into four disjoint regions corresponding to decreasing statistical and computational complexities: (1) the impossible regime, where all algorithms fail; (2) the hard regime, where the exponential-time Maximum Likelihood Estimator (MLE) succeeds, and no polynomial-time method is known; (3) the easy regime, where the polynomial-time convexified MLE succeeds; (4) the simple regime, where a simple counting/thresholding procedure succeeds. Moreover, each of these algorithms provably fails in the previous harder regimes. Our theorems establish the first minimax recovery results for the high-dimensional setting, and provide the best known guarantees for polynomial-time algorithms. Our results extend to the related problem of submatrix localization, a.k.a. bi-clustering. These results demonstrate the tradeoffs between statistical and computational considerations.

Related Material