Learning the Irreducible Representations of Commutative Lie Groups


Taco Cohen, Max Welling ;
Proceedings of the 31st International Conference on Machine Learning, PMLR 32(2):1755-1763, 2014.


We present a new probabilistic model of compact commutative Lie groups that produces invariant-equivariant and disentangled representations of data. To define the notion of disentangling, we borrow a fundamental principle from physics that is used to derive the elementary particles of a system from its symmetries. Our model employs a newfound Bayesian conjugacy relation that enables fully tractable probabilistic inference over compact commutative Lie groups – a class that includes the groups that describe the rotation and cyclic translation of images. We train the model on pairs of transformed image patches, and show that the learned invariant representation is highly effective for classification.

Related Material