Label Distribution Learning Machine

Jing Wang, Xin Geng
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:10749-10759, 2021.

Abstract

Although Label Distribution Learning (LDL) has witnessed extensive classification applications, it faces the challenge of objective mismatch – the objective of LDL mismatches that of classification, which has seldom been noticed in existing studies. Our goal is to solve the objective mismatch and improve the classification performance of LDL. Specifically, we extend the margin theory to LDL and propose a new LDL method called \textbf{L}abel \textbf{D}istribution \textbf{L}earning \textbf{M}achine (LDLM). First, we define the label distribution margin and propose the \textbf{S}upport \textbf{V}ector \textbf{R}egression \textbf{M}achine (SVRM) to learn the optimal label. Second, we propose the adaptive margin loss to learn label description degrees. In theoretical analysis, we develop a generalization theory for the SVRM and analyze the generalization of LDLM. Experimental results validate the better classification performance of LDLM.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-wang21h, title = {Label Distribution Learning Machine}, author = {Wang, Jing and Geng, Xin}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {10749--10759}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/wang21h/wang21h.pdf}, url = {https://proceedings.mlr.press/v139/wang21h.html}, abstract = {Although Label Distribution Learning (LDL) has witnessed extensive classification applications, it faces the challenge of objective mismatch – the objective of LDL mismatches that of classification, which has seldom been noticed in existing studies. Our goal is to solve the objective mismatch and improve the classification performance of LDL. Specifically, we extend the margin theory to LDL and propose a new LDL method called \textbf{L}abel \textbf{D}istribution \textbf{L}earning \textbf{M}achine (LDLM). First, we define the label distribution margin and propose the \textbf{S}upport \textbf{V}ector \textbf{R}egression \textbf{M}achine (SVRM) to learn the optimal label. Second, we propose the adaptive margin loss to learn label description degrees. In theoretical analysis, we develop a generalization theory for the SVRM and analyze the generalization of LDLM. Experimental results validate the better classification performance of LDLM.} }
Endnote
%0 Conference Paper %T Label Distribution Learning Machine %A Jing Wang %A Xin Geng %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-wang21h %I PMLR %P 10749--10759 %U https://proceedings.mlr.press/v139/wang21h.html %V 139 %X Although Label Distribution Learning (LDL) has witnessed extensive classification applications, it faces the challenge of objective mismatch – the objective of LDL mismatches that of classification, which has seldom been noticed in existing studies. Our goal is to solve the objective mismatch and improve the classification performance of LDL. Specifically, we extend the margin theory to LDL and propose a new LDL method called \textbf{L}abel \textbf{D}istribution \textbf{L}earning \textbf{M}achine (LDLM). First, we define the label distribution margin and propose the \textbf{S}upport \textbf{V}ector \textbf{R}egression \textbf{M}achine (SVRM) to learn the optimal label. Second, we propose the adaptive margin loss to learn label description degrees. In theoretical analysis, we develop a generalization theory for the SVRM and analyze the generalization of LDLM. Experimental results validate the better classification performance of LDLM.
APA
Wang, J. & Geng, X.. (2021). Label Distribution Learning Machine. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:10749-10759 Available from https://proceedings.mlr.press/v139/wang21h.html.

Related Material