[edit]
$α$-MDF: An Attention-based Multimodal Differentiable Filter for Robot State Estimation
Proceedings of The 7th Conference on Robot Learning, PMLR 229:3870-3893, 2023.
Abstract
Differentiable Filters are recursive Bayesian estimators that derive the state transition and measurement models from data alone. Their data-driven nature eschews the need for explicit analytical models, while remaining algorithmic components of the filtering process intact. As a result, the gain mechanism – a critical component of the filtering process – remains non-differentiable and cannot be adjusted to the specific nature of the task or context. In this paper, we propose an attention-based Multimodal Differentiable Filter ($\alpha$-MDF) which utilizes modern attention mechanisms to learn multimodal latent representations. Unlike previous differentiable filter frameworks, $\alpha$-MDF substitutes the traditional gain, e.g., the Kalman gain, with a neural attention mechanism. The approach generates specialized, context-dependent gains that can effectively combine multiple input modalities and observed variables. We validate $\alpha$-MDF on a diverse set of robot state estimation tasks in real world and simulation. Our results show $\alpha$-MDF achieves significant reductions in state estimation errors, demonstrating nearly 4-fold improvements compared to state-of-the-art sensor fusion strategies for rigid body robots. Additionally, the $\alpha$-MDF consistently outperforms differentiable filter baselines by up to $45%$ in soft robotics tasks. The project is available at alpha-mdf.github.io and the codebase is at github.com/ir-lab/alpha-MDF