[edit]
ChainedDiffuser: Unifying Trajectory Diffusion and Keypose Prediction for Robotic Manipulation
Proceedings of The 7th Conference on Robot Learning, PMLR 229:2323-2339, 2023.
Abstract
We present ChainedDiffuser, a policy architecture that unifies action keypose prediction and trajectory diffusion generation for learning robot manipulation from demonstrations. Our main innovation is to use a global transformer-based action predictor to predict actions at keyframes, a task that requires multi- modal semantic scene understanding, and to use a local trajectory diffuser to predict trajectory segments that connect predicted macro-actions. ChainedDiffuser sets a new record on established manipulation benchmarks, and outperforms both state-of-the-art keypose (macro-action) prediction models that use motion plan- ners for trajectory prediction, and trajectory diffusion policies that do not predict keyframe macro-actions. We conduct experiments in both simulated and real-world environments and demonstrate ChainedDiffuser’s ability to solve a wide range of manipulation tasks involving interactions with diverse objects.