Two-temperature logistic regression based on the Tsallis divergence

Ehsan Amid, Manfred K. Warmuth, Sriram Srinivasan
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, PMLR 89:2388-2396, 2019.

Abstract

We develop a variant of multiclass logistic regression that is significantly more robust to noise. The algorithm has one weight vector per class and the surrogate loss is a function of the linear activations (one per class). The surrogate loss of an example with linear activation vector $\mathbf{a}$ and class $c$ has the form $-\log_{t_1} \exp_{t_2} (a_c - G_{t_2}(\mathbf{a}))$ where the two temperatures $t_1$ and $t_2$ “temper” the $\log$ and $\exp$, respectively, and $G_{t_2}(\mathbf{a})$ is a scalar value that generalizes the log-partition function. We motivate this loss using the Tsallis divergence. Our method allows transitioning between non-convex and convex losses by the choice of the temperature parameters. As the temperature $t_1$ of the logarithm becomes smaller than the temperature $t_2$ of the exponential, the surrogate loss becomes “quasi convex”. Various tunings of the temperatures recover previous methods and tuning the degree of non-convexity is crucial in the experiments. In particular, quasi-convexity and boundedness of the loss provide significant robustness to the outliers. We explain this by showing that $t_1 < 1$ caps the surrogate loss and $t_2 >1$ makes the predictive distribution have a heavy tail. We show that the surrogate loss is Bayes-consistent, even in the non-convex case. Additionally, we provide efficient iterative algorithms for calculating the log-partition value only in a few number of iterations. Our compelling experimental results on large real-world datasets show the advantage of using the two-temperature variant in the noisy as well as the noise free case.

Cite this Paper


BibTeX
@InProceedings{pmlr-v89-amid19a, title = {Two-temperature logistic regression based on the Tsallis divergence}, author = {Amid, Ehsan and Warmuth, Manfred K. and Srinivasan, Sriram}, booktitle = {Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics}, pages = {2388--2396}, year = {2019}, editor = {Chaudhuri, Kamalika and Sugiyama, Masashi}, volume = {89}, series = {Proceedings of Machine Learning Research}, month = {16--18 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v89/amid19a/amid19a.pdf}, url = {https://proceedings.mlr.press/v89/amid19a.html}, abstract = {We develop a variant of multiclass logistic regression that is significantly more robust to noise. The algorithm has one weight vector per class and the surrogate loss is a function of the linear activations (one per class). The surrogate loss of an example with linear activation vector $\mathbf{a}$ and class $c$ has the form $-\log_{t_1} \exp_{t_2} (a_c - G_{t_2}(\mathbf{a}))$ where the two temperatures $t_1$ and $t_2$ “temper” the $\log$ and $\exp$, respectively, and $G_{t_2}(\mathbf{a})$ is a scalar value that generalizes the log-partition function. We motivate this loss using the Tsallis divergence. Our method allows transitioning between non-convex and convex losses by the choice of the temperature parameters. As the temperature $t_1$ of the logarithm becomes smaller than the temperature $t_2$ of the exponential, the surrogate loss becomes “quasi convex”. Various tunings of the temperatures recover previous methods and tuning the degree of non-convexity is crucial in the experiments. In particular, quasi-convexity and boundedness of the loss provide significant robustness to the outliers. We explain this by showing that $t_1 < 1$ caps the surrogate loss and $t_2 >1$ makes the predictive distribution have a heavy tail. We show that the surrogate loss is Bayes-consistent, even in the non-convex case. Additionally, we provide efficient iterative algorithms for calculating the log-partition value only in a few number of iterations. Our compelling experimental results on large real-world datasets show the advantage of using the two-temperature variant in the noisy as well as the noise free case.} }
Endnote
%0 Conference Paper %T Two-temperature logistic regression based on the Tsallis divergence %A Ehsan Amid %A Manfred K. Warmuth %A Sriram Srinivasan %B Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Masashi Sugiyama %F pmlr-v89-amid19a %I PMLR %P 2388--2396 %U https://proceedings.mlr.press/v89/amid19a.html %V 89 %X We develop a variant of multiclass logistic regression that is significantly more robust to noise. The algorithm has one weight vector per class and the surrogate loss is a function of the linear activations (one per class). The surrogate loss of an example with linear activation vector $\mathbf{a}$ and class $c$ has the form $-\log_{t_1} \exp_{t_2} (a_c - G_{t_2}(\mathbf{a}))$ where the two temperatures $t_1$ and $t_2$ “temper” the $\log$ and $\exp$, respectively, and $G_{t_2}(\mathbf{a})$ is a scalar value that generalizes the log-partition function. We motivate this loss using the Tsallis divergence. Our method allows transitioning between non-convex and convex losses by the choice of the temperature parameters. As the temperature $t_1$ of the logarithm becomes smaller than the temperature $t_2$ of the exponential, the surrogate loss becomes “quasi convex”. Various tunings of the temperatures recover previous methods and tuning the degree of non-convexity is crucial in the experiments. In particular, quasi-convexity and boundedness of the loss provide significant robustness to the outliers. We explain this by showing that $t_1 < 1$ caps the surrogate loss and $t_2 >1$ makes the predictive distribution have a heavy tail. We show that the surrogate loss is Bayes-consistent, even in the non-convex case. Additionally, we provide efficient iterative algorithms for calculating the log-partition value only in a few number of iterations. Our compelling experimental results on large real-world datasets show the advantage of using the two-temperature variant in the noisy as well as the noise free case.
APA
Amid, E., Warmuth, M.K. & Srinivasan, S.. (2019). Two-temperature logistic regression based on the Tsallis divergence. Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 89:2388-2396 Available from https://proceedings.mlr.press/v89/amid19a.html.

Related Material