[edit]

Volume 286: Conference on Uncertainty in Artificial Intelligence, 21-25 July 2025, Rio Othon Palace, Rio de Janeiro, Brazil

[edit]

Editors: Silvia Chiappa, Sara Magliacane

[bib][citeproc]

Aggregating Data for Optimal Learning

Sushant Agarwal, Yukti Makhija, Rishi Saket, Aravindan Raghuveer; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1-30

Causal Inference amid Missingness-Specific Independences and Mechanism Shifts

Johan de Aguas, Leonard Henckel, Johan Pensar, Guido Biele; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:31-44

Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information

Ömer Faruk Akgül, Rajgopal Kannan, Viktor Prasanna; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:45-63

CATE Estimation With Potential Outcome Imputation From Local Regression

Ahmed Aloui, Juncheng Dong, Cat Phuoc Le, Vahid Tarokh; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:64-90

Conditional Average Treatment Effect Estimation Under Hidden Confounders

Ahmed Aloui, Juncheng Dong, Ali Hasan, Vahid Tarokh; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:91-110

Sparse Structure Exploration and Re-optimization for Vision Transformer

Sangho An, Jinwoo Kim, Keonho Lee, Jingang Huh, Chanwoong Kwak, Yujin Lee, Moonsub Jin, Jangho Kim; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:111-131

Symbiotic Local Search for Small Decision Tree Policies in MDPs

Roman Andriushchenko, Milan Ceska, Debraj Chakraborty, Sebastian Junges, Jan Kretinsky, Filip Macák; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:132-148

MOHITO: Multi-Agent Reinforcement Learning using Hypergraphs for Task-Open Systems

Gayathri Anil, Prashant Doshi, Daniel Alan Redder, Adam Eck, Leen-Kiat Soh; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:149-171

Expert-In-The-Loop Causal Discovery: Iterative Model Refinement Using Expert Knowledge

Ankur Ankan, Johannes Textor; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:172-183

Evasion Attacks Against Bayesian Predictive Models

Pablo G. Arce, Roi Naveiro, David Ríos Insua; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:184-202

Hybrid Bernstein Normalizing Flows for Flexible Multivariate Density Regression with Interpretable Marginals

Marcel Arpogaus, Thomas Kneib, Thomas Nagler, David Rügamer; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:203-222

Lower Bound on Howard Policy Iteration for Deterministic Markov Decision Processes

Ali Asadi, Krishnendu Chatterjee, Jakob de Raaij; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:223-237

Limit-sure Reachability for Small Memory Policies in POMDPs is NP-complete

Ali Asadi, Krishnendu Chatterjee, Raimundo Saona, Ali Shafiee; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:238-256

Can a Bayesian Oracle Prevent Harm from an Agent?

Yoshua Bengio, Michael K. Cohen, Nikolay Malkin, Matt MacDermott, Damiano Fornasiere, Pietro Greiner, Younesse Kaddar; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:257-270

Revisiting the Berkeley Admissions data: Statistical Tests for Causal Hypotheses

Sourbh Bhadane, Joris Marten Mooij, Philip Boeken, Onno Zoeter; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:271-295

Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget

Jie Bian, Vincent Y. F. Tan; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:296-331

BELIEF - Bayesian Sign Entropy Regularization for LIME Framework

Revoti Prasad Bora, Philipp Terhörst, Raymond Veldhuis, Raghavendra Ramachandra, Kiran Raja; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:332-354

Multi-Cost-Bounded Reachability Analysis of POMDPs

Alexander Bork, Joost-Pieter Katoen, Tim Quatmann, Svenja Stein; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:355-387

Using Submodular Optimization to Approximate Minimum-Size Abductive Path Explanations for Tree-Based Models

Louenas Bounia; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:388-397

Stein Variational Evolution Strategies

Cornelius V. Braun, Robert Tjarko Lange, Marc Toussaint; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:398-420

Causal Models for Growing Networks

Gecia Bravo-Hermsdorff, Kayvan Sadeghi, Lee M. Gunderson; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:421-442

Epistemic Uncertainty in Conformal Scores: A Unified Approach

Luben Miguel Cruz Cabezas, Vagner Silva Santos, Thiago Ramos, Rafael Izbicki; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:443-470

Creative Agents: Empowering Agents with Imagination for Creative Tasks

Penglin Cai, Chi Zhang, Yuhui Fu, Haoqi Yuan, Zongqing Lu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:471-496

Fast Non-convex Matrix Sensing with Optimal Sample Complexity

Jian-Feng Cai, Tong Wu, Ruizhe Xia; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:497-520

Out-of-distribution Robust Optimization

Zhongze Cai, Hansheng Jiang, Xiaocheng Li; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:521-539

Unsupervised Attributed Dynamic Network Embedding with Stability Guarantees

Emma Ceccherini, Ian Gallagher, Andrew Jones, Daniel John Lawson; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:540-567

Improving Graph Contrastive Learning with Community Structure

Xiang Chen, Kun Yue, Liang Duan, Lixing Yu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:568-585

Just Trial Once: Ongoing Causal Validation of Machine Learning Models

Jacob M. Chen, Michael Oberst; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:586-611

Adaptive Threshold Sampling for Pure Exploration in Submodular Bandits

Wenjing Chen, Shuo Xing, Victoria G. Crawford; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:612-646

Tuning-Free Coreset Markov Chain Monte Carlo via Hot DoG

Naitong Chen, Jonathan H. Huggins, Trevor Campbell; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:647-672

NRFlow: Towards Noise-Robust Generative Modeling via High-Order Mechanism

Bo Chen, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, Mingda Wan, Xugang Ye; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:673-704

Moment Alignment: Unifying Gradient and Hessian Matching for Domain Generalization

Yuen Chen, Haozhe Si, Guojun Zhang, Han Zhao; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:705-736

Selective Blocking for Message-Passing Neural Networks on Heterophilic Graphs

Yoonhyuk Choi, Taewook Ko, Jiho Choi, Chong-Kwon Kim; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:737-751

Well-Defined Function-Space Variational Inference in Bayesian Neural Networks via Regularized KL-Divergence

Tristan Cinquin, Robert Bamler; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:752-776

Optimal Transport for Probabilistic Circuits

Adrian Ciotinga, YooJung Choi; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:777-797

Building Conformal Prediction Intervals with Approximate Message Passing

Lucas Clarté, Lenka Zdeborová; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:798-820

RL, but don’t do anything I wouldn’t do

Michael K. Cohen, Marcus Hutter, Yoshua Bengio, Stuart Russell; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:821-836

Measuring IIA Violations in Similarity Choices with Bayesian Models

Hugo Sales Correa, Suryanarayana Sankagiri, Daniel R. Figueiredo, Matthias Grossglauser; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:837-862

The Relativity of Causal Knowledge

Gabriele D’Acunto, Claudio Battiloro; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:863-881

Online Learning with Stochastically Partitioning Experts

Puranjay Datta, Sharayu Moharir, Jaya Prakash Champati; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:882-896

ELBO, regularized maximum likelihood, and their common one-sample approximation for training stochastic neural networks

Sina Däubener, Simon Damm, Asja Fischer; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:897-914

Optimal Submanifold Structure in Log-linear Models

Zhou Derun, Mahito Sugiyama; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:915-932

Calibrated Regression Against An Adversary Without Regret

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:933-958

Cutting Through Privacy: A Hyperplane-Based Data Reconstruction Attack in Federated Learning

Francesco Diana, André Nusser, Chuan Xu, Giovanni Neglia; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:959-980

Valid Bootstraps for Network Embeddings with Applications to Network Visualisation

Emerald Dilworth, Ed Davis, Daniel John Lawson; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:981-1002

Nearly Optimal Differentially Private ReLU Regression

Meng Ding, Mingxi Lei, Shaowei Wang, Tianhang Zheng, Di Wang, Jinhui Xu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1003-1038

Simulation-based Inference for High-dimensional Data using Surjective Sequential Neural Likelihood Estimation

Simon Dirmeier, Carlo Albert, Fernando Perez-Cruz; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1039-1063

Causal Discovery for Linear Non-Gaussian Models with Disjoint Cycles

Mathias Drton, Marina Garrote-López, Niko Nikov, Elina Robeva, Y. Samuel Wang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1064-1083

Tuning Algorithmic and Architectural Hyperparameters in Graph-Based Semi-Supervised Learning with Provable Guarantees

Ally Yalei Du, Eric Huang, Dravyansh Sharma; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1084-1111

Computationally Efficient Methods for Invariant Feature Selection with Sparsity

Jane Du, Arindam Banerjee; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1112-1120

Probabilistic Semantics Guided Discovery of Approximate Functional Dependencies

Liang Duan, Xinran Wu, Xinhui Li, Lixing Yu, Kun Yue; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1121-1134

Learning Causal Response Representations through Direct Effect Analysis

Homer Durand, Gherardo Varando, Gustau Camps-Valls; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1135-1166

Toward Universal Laws of Outlier Propagation

Aram Ebtekar, Yuhao Wang, Dominik Janzing; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1167-1183

Mixup Regularization: A Probabilistic Perspective

Yousef El-Laham, Niccolo Dalmasso, Svitlana Vyetrenko, Vamsi K. Potluru, Manuela Veloso; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1184-1219

Proximal Interacting Particle Langevin Algorithms

Paula Cordero Encinar, Francesca Romana Crucinio, Omer Deniz Akyildiz; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1220-1265

Generalised Probabilistic Modelling and Improved Uncertainty Estimation in Comparative LLM-as-a-judge

Yassir Fathullah, Mark Gales; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1266-1288

Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles

Pablo Flores, Olga Graf, Pavlos Protopapas, Karim Pichara; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1289-1336

Partial-Label Learning with Conformal Candidate Cleaning

Tobias Fuchs, Florian Kalinke; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1337-1357

Order-Optimal Global Convergence for Actor-Critic with General Policy and Neural Critic Parametrization

Swetha Ganesh, Jiayu Chen, Washim Uddin Mondal, Vaneet Aggarwal; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1358-1380

A Fast Optimization View: Reformulating Single Layer Attention in LLM Based on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time

Yeqi Gao, Zhao Song, Weixin Wang, Junze Yin; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1381-1452

Nonlinear Causal Discovery for Grouped Data

Konstantin Göbler, Tobias Windisch, Mathias Drton; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1453-1475

Statistical Significance of Feature Importance Rankings

Jeremy Goldwasser, Giles Hooker; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1476-1496

Optimal Zero-shot Regret Minimization for Selective Classification with Out-of-Distribution Detection

Eduardo Dadalto Câmara Gomes, Marco Romanelli; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1497-1520

Over the Top-1: Uncertainty-Aware Cross-Modal Retrieval with CLIP

Lluis Gomez; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1521-1532

Efficient Algorithms for Logistic Contextual Slate Bandits with Bandit Feedback

Tanmay Goyal, Gaurav Sinha; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1533-1568

Guaranteed Prediction Sets for Functional Surrogate Models

Ander Gray, Vignesh Gopakumar, Sylvain Rousseau, Sebastien Destercke; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1569-1585

On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis

Junyi Guan, Abhijith Sharma, Chong Tian, Salem Lahlou; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1586-1599

Learning Algorithms for Multiple Instance Regression

Aaryan Gupta, Rishi Saket; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1600-1615

Contrast-CAT: Contrasting Activations for Enhanced Interpretability in Transformer-based Text Classifiers

Sungmin Han, Jeonghyun Lee, Sangkyun Lee; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1616-1625

Conformal Prediction without Nonconformity Scores

Jonas Hanselle, Alireza Javanmardi, Tobias Florin Oberkofler, Yusuf Sale, Eyke Hüllermeier; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1626-1639

Quantum Speedups for Bayesian Network Structure Learning

Juha Harviainen, Kseniya Rychkova, Mikko Koivisto; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1640-1647

RCAP: Robust, Class-Aware, Probabilistic Dynamic Dataset Pruning

Atif Hassan, Swanand Khare, Jiaul H. Paik; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1648-1662

SPvR: Structured Pruning via Ranking

Atif Hassan, Jiaul H. Paik, Swanand Khare; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1663-1676

LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery

Sujai Hiremath, Promit Ghosal, Kyra Gan; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1677-1709

Contaminated Multivariate Time-Series Anomaly Detection with Spatio-Temporal Graph Conditional Diffusion Models

Thi Kieu Khanh Ho, Narges Armanfard; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1710-1729

Simulation-Free Differential Dynamics Through Neural Conservation Laws

Mengjian Hua, Eric Vanden-Eijnden, Ricky T. Q. Chen; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1730-1744

Augmenting Online RL with Offline Data is All You Need: A Unified Hybrid RL Algorithm Design and Analysis

Ruiquan Huang, Donghao Li, Chengshuai Shi, Cong Shen, Jing Yang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1745-1767

FDR-SVM: A Federated Distributionally Robust Support Vector Machine via a Mixture of Wasserstein Balls Ambiguity Set

Michael Ibrahim, Heraldo Rozas, Nagi Gebraeel, Weijun Xie; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1768-1793

Root Cause Analysis of Failures from Partial Causal Structures

Azam Ikram, Kenneth Lee, Shubham Agarwal, Shiv Kumar Saini, Saurabh Bagchi, Murat Kocaoglu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1794-1818

Lower Bounds on the Size of Markov Equivalence Classes

Erik L Jahn, Frederick Eberhardt, Leonard Schulman; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1819-1836

Generative Uncertainty in Diffusion Models

Metod Jazbec, Eliot Wong-Toi, Guoxuan Xia, Dan Zhang, Eric Nalisnick, Stephan Mandt; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1837-1858

Fast Calculation of Feature Contributions in Boosting Trees

Zhongli Jiang, Min Zhang, Dabao Zhang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1859-1875

Coevolutionary Emergent Systems Optimization with Applications to Ultra-High-Dimensional Metasurface Design : OAM Wave Manipulation

Zhengxuan Jiang, Guowen Ding, Wen Jiang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1876-1894

Best Possible Q-Learning

Jiechuan Jiang, Zongqing Lu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1895-1908

Distributional Reinforcement Learning with Dual Expectile-Quantile Regression

Sami Jullien, Romain Deffayet, Jean-Michel Renders, Paul Groth, Maarten de Rijke; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1909-1923

Provably Adaptive Average Reward Reinforcement Learning for Metric Spaces

Avik Kar, Rahul Singh; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1924-1964

ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression

Avetik Karagulyan, Peter Richtárik; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1965-1989

Adapting Prediction Sets to Distribution Shifts Without Labels

Kevin Kasa, Zhiyu Zhang, Heng Yang, Graham W. Taylor; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1990-2010

Moments of Causal Effects

Yuta Kawakami, Jin Tian; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2011-2043

Decomposition of Probabilities of Causation with Two Mediators

Yuta Kawakami, Jin Tian; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2044-2068

Explaining Negative Classifications of AI Models in Tumor Diagnosis

David A. Kelly, Hana Chockler, Nathan Blake; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2069-2081

Enumerating Optimal Cost-Constrained Adjustment Sets

Batya Kenig; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2082-2100

Accurate and Scalable Stochastic Gaussian Process Regression via Learnable Coreset-based Variational Inference

Mert Ketenci, Adler J Perotte, Noémie Elhadad, Iñigo Urteaga; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2101-2142

Efficiently Escaping Saddle Points for Policy Optimization

Mohammadsadegh Khorasani, Saber Salehkaleybar, Negar Kiyavash, Niao He, Matthias Grossglauser; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2143-2162

Collaborative Prediction: To Join or To Disjoin Datasets

Kyung Rok Kim, Yansong Wang, Xiaocheng Li, Guanting Chen; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2163-2201

Bayesian Optimization with Inexact Acquisition: Is Random Grid Search Sufficient?

Hwanwoo Kim, Chong Liu, Yuxin Chen; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2202-2222

Causal Effect Identification in Heterogeneous Environments from Higher-Order Moments

Yaroslav Kivva, Sina Akbari, Saber Salehkaleybar, Negar Kiyavash; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2223-2254

A Multivariate Unimodality Test Harnessing the Dip Statistic of Mahalanobis Distances Over Random Projections

Prodromos Kolyvakis, Aristidis Likas; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2255-2268

DF$^2$: Distribution-Free Decision-Focused Learning

Lingkai Kong, Wenhao Mu, Jiaming Cui, Yuchen Zhuang, B. Aditya Prakash, Bo Dai, Chao Zhang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2269-2290

Error Bounds for Physics-Informed Neural Networks in Fokker-Planck PDEs

Chun-Wei Kong, Luca Laurenti, Jay McMahon, Morteza Lahijanian; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2291-2324

Robust Optimization with Diffusion Models for Green Security

Lingkai Kong, Haichuan Wang, Yuqi Pan, Cheol Woo Kim, Mingxiao Song, Alayna Nguyen, Tonghan Wang, Haifeng Xu, Milind Tambe; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2325-2344

Probabilistic Explanations for Regression Models

Frédéric Koriche, Jean-Marie Lagniez, Chi Tran; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2345-2362

An Optimal Algorithm for Strongly Convex Min-Min Optimization

Dmitry Kovalev, Alexander Gasnikov, Grigory Malinovsky; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2363-2379

Budget Allocation Exploiting Label Correlation between Instances

Adithya Kulkarni, Mohna Chakraborty, Sihong Xie, Qi Li; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2380-2395

Beyond Sin-Squared Error: Linear Time Entrywise Uncertainty Quantification for Streaming PCA

Syamantak Kumar, Shourya Pandey, Purnamrita Sarkar; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2396-2430

A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction

Leander Kurscheidt, Paolo Morettin, Roberto Sebastiani, Andrea Passerini, Antonio Vergari; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2431-2471

Adaptive Reward Design for Reinforcement Learning

Minjae Kwon, Ingy ElSayed-Aly, Lu Feng; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2472-2485

Constraint-based Causal Discovery from a Collection of Conditioning Sets

Kenneth Lee, Bruno Ribeiro, Murat Kocaoglu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2486-2516

Trading Off Voting Axioms for Privacy

Zhechen Li, Ao Liu, Lirong Xia, Yongzhi Cao, Hanpin Wang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2517-2536

Enhancing Uncertainty Quantification in Large Language Models through Semantic Graph Density

Zhaoye Li, Siyuan Shen, Wenjing Yang, Ruochun Jin, Huan Chen, Ligong Cao, Jing Ren; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2537-2551

Dynamic Maintenance of Kernel Density Estimation Data Structure: From Practice to Theory

Jiehao Liang, Zhao Song, Zhaozhuo Xu, Junze Yin, Danyang Zhuo; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2552-2581

Flat Posterior Does Matter For Bayesian Model Averaging

Sungjun Lim, Jeyoon Yeom, Sooyon Kim, Hoyoon Byun, Jinho Kang, Yohan Jung, Jiyoung Jung, Kyungwoo Song; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2582-2617

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

I-Cheng Lin, Osman Yagan, Carlee Joe-Wong; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2618-2641

CP$^2$: Leveraging Geometry for Conformal Prediction via Canonicalization

Putri A Van der Linden, Alexander Timans, Erik J Bekkers; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2642-2658

Multi-group Uncertainty Quantification for Long-form Text Generation

Terrance Liu, Steven Wu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2659-2684

DyGMAE: A Novel Dynamic Graph Masked Autoencoder for Link Prediction

Weixiong Liu, Junwei Cheng, Zhongyu Pan, Chaobo He, Quanlong Guan; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2685-2700

Letting Uncertainty Guide Your Multimodal Machine Translation

Wuyi Liu, Yue Gao, Yige Mao, Jing Zhao; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2701-2710

STIMULUS: Achieving Fast Convergence and Low Sample Complexity in Stochastic Multi-Objective Learning

Zhuqing Liu, Chaosheng Dong, Michinari Momma, Simone Shao, Shaoyuan Xu, Yan Gao, Haibo Yang, Jia Liu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2711-2747

Periodical Moving Average Accelerates Gradient Accumulation for Post-Training

Yumou Liu, An Li, Chaojie Li, Fei Yu, Benyou Wang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2748-2768

Beyond Invisibility: Learning Robust Visible Watermarks for Stronger Copyright Protection

Tianci Liu, Tong Yang, Quan Zhang, Qi Lei; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2769-2785

Guiding Time-Varying Generative Models with Natural Gradients on Exponential Family Manifold

Song Liu, Leyang Wang, Yakun Wang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2786-2803

Federated Rényi Fair Inference in Federated Heterogeneous System

Zhiyong Ma, Yuanjie Shi, Yan Yan, Jian Chen; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2804-2843

Multi-armed Bandits with Missing Outcomes

Ilia Mahrooghi, Mahshad Moradi, Sina Akbari, Negar Kiyavash; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2844-2875

Weak to Strong Learning from Aggregate Labels

Yukti Makhija, Rishi Saket; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2876-2891

SALSA: A Secure, Adaptive and Label-Agnostic Scalable Algorithm for Machine Unlearning

Owais Makroo, Atif Hassan, Swanand Khare; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2892-2905

Testing Generalizability in Causal Inference

Daniel de Vassimon Manela, Linying Yang, Robin J. Evans; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2906-2927

MindFlayer SGD: Efficient Parallel SGD in the Presence of Heterogeneous and Random Worker Compute Times

Arto Maranjyan, Omar Shaikh Omar, Peter Richtárik; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2928-2957

Off-policy Predictive Control with Causal Sensitivity Analysis

Myrl G Marmarelis, Ali Hasan, Kamyar Azizzadenesheli, R. Michael Alvarez, Anima Anandkumar; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2958-2972

Improved Variational Inference in Discrete VAEs using Error Correcting Codes

María Martínez-García, Grace Villacrés, David Mitchell, Pablo M. Olmos; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:2973-3012

A Quantum Information Theoretic Approach to Tractable Probabilistic Models

Pedro Zuidberg Dos Martires; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3013-3030

ODD: Overlap-aware Estimation of Model Performance under Distribution Shift

Aayush Mishra, Anqi Liu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3031-3047

SpinSVAR: Estimating Structural Vector Autoregression Assuming Sparse Input

Panagiotis Misiakos, Markus Püschel; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3048-3092

When Extragradient Meets PAGE: Bridging Two Giants to Boost Variational Inequalities

Gleb Molodtsov, Valery Parfenov, Egor Petrov, Evseev Grigoriy, Daniil Medyakov, Aleksandr Beznosikov; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3093-3122

Relational Causal Discovery with Latent Confounders

Matteo Negro, Andrea Piras, Ragib Ahsan, David Arbour, Elena Zheleva; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3123-3154

Temperature Optimization for Bayesian Deep Learning

Kenyon Ng, Chris van der Heide, Liam Hodgkinson, Susan Wei; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3155-3181

Multiple Wasserstein Gradient Descent Algorithm for Multi-Objective Distributional Optimization

Hai Dai Nguyen, Hiroshi Mamitsuka, Atsuyoshi Nakamura; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3182-3199

Stochastic Embeddings : A Probabilistic and Geometric Analysis of Out-of-Distribution Behavior

Anthony Nguyen, Emanuel Aldea, Sylvie Le Hégarat-Mascle, Renaud Lustrat; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3200-3220

Bayesian Optimization over Bounded Domains with the Beta Product Kernel

Huy Hoang Nguyen, Han Zhou, Matthew B. Blaschko, Aleksei Tiulpin; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3221-3234

i$^2$VAE: Interest Information Augmentation with Variational Regularizers for Cross-Domain Sequential Recommendation

Xuying Ning, Wujiang Xu, Tianxin Wei, Xiaolei Liu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3235-3251

Discriminative ordering through ensemble consensus

Louis Ohl, Fredrik Lindsten; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3252-3271

Do Vendi Scores Converge with Finite Samples? Truncated Vendi Score for Finite-Sample Convergence Guarantees

Azim Ospanov, Farzan Farnia; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3272-3299

Probability-Raising Causality for Uncertain Parametric Markov Decision Processes with PAC Guarantees

Ryohei Oura, Yuji Ito; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3300-3321

An Information-theoretic Perspective of Hierarchical Clustering on Graphs

Yicheng Pan, Bingchen Fan, Pengyu Long, Feng Zheng; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3322-3345

Concept Forgetting via Label Annealing

Subhodip Panda, Ananda Theertha Suresh, Atri Guha, Prathosh Ap; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3346-3360

Correlated Quantization for Faster Nonconvex Distributed Optimization

Andrei Panferov, Yury Demidovich, Ahmad Rammal, Peter Richtárik; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3361-3387

Exploring Exploration in Bayesian Optimization

Leonard Papenmeier, Nuojin Cheng, Stephen Becker, Luigi Nardi; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3388-3415

Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs

Milan Papez, Martin Rektoris, Vaclav Smidl, Tomáš Pevný; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3416-3450

A Trust-Region Method for Graphical Stein Variational Inference

Liam Pavlovic, David M Rosen; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3451-3464

Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms

Anne Helby Petersen; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3465-3479

Multi-Label Bayesian Active Learning with Inter-Label Relationships

Yuanyuan Qi, Jueqing Lu, Xiaohao Yang, Joanne Enticott, Lan Du; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3480-3491

Enhanced Equilibria-Solving via Private Information Pre-Branch Structure in Adversarial Team Games

Chen Qiu, Haobo Fu, Kai Li, Jiajia Zhang, Xuan Wang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3492-3506

FeDCM: Federated Learning of Deep Causal Generative Models

Md Musfiqur Rahman, Murat Kocaoglu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3507-3524

COS-DPO: Conditioned One-Shot Multi-Objective Fine-Tuning Framework

Yinuo Ren, Tesi Xiao, Michael Shavlovsky, Lexing Ying, Holakou Rahmanian; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3525-3551

Learning with Confidence

Oliver Ethan Richardson; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3552-3569

What is the Right Notion of Distance between Predict-then-Optimize Tasks?

Paula Rodriguez-Diaz, Lingkai Kong, Kai Wang, David Alvarez-Melis, Milind Tambe; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3570-3586

Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference

Colin Samplawski, Adam D. Cobb, Manoj Acharya, Ramneet Kaur, Susmit Jha; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3587-3604

On Information-Theoretic Measures of Predictive Uncertainty

Kajetan Schweighofer, Lukas Aichberger, Mykyta Ielanskyi, Sepp Hochreiter; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3605-3640

Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls

Aras Selvi, Eleonora Kreacic, Mohsen Ghassemi, Vamsi K. Potluru, Tucker Balch, Manuela Veloso; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3641-3674

Revisiting the Equivalence of Bayesian Neural Networks and Gaussian Processes: On the Importance of Learning Activations

Marcin Sendera, Amin Sorkhei, Tomasz Kuśmierczyk; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3675-3700

Scaling Probabilistic Circuits via Data Partitioning

Jonas Seng, Florian Peter Busch, Pooja Prasad, Devendra Singh Dhami, Martin Mundt, Kristian Kersting; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3701-3717

Conformal Prediction Sets for Deep Generative Models via Reduction to Conformal Regression

Hooman Shahrokhi, Devjeet Raj Roy, Yan Yan, Venera Arnaoudova, Jana Doppa; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3718-3748

Reparameterizing Hybrid Markov Logic Networks to handle Covariate-Shift in Representations

Anup Shakya, Abisha Thapa Magar, Somdeb Sarkhel, Deepak Venugopal; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3749-3765

Divide and Orthogonalize: Efficient Continual Learning with Local Model Space Projection

Jin Shang, Simone Shao, Tian Tong, Fan Yang, Yetian Chen, Yang Jiao, Jia Liu, Yan Gao; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3766-3786

Experimentation under Treatment Dependent Network Interference

Shiv Shankar, Ritwik Sinha, Madalina Fiterau; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3787-3808

Learning Robust XGBoost Ensembles for Regression Tasks

Atri Vivek Sharma, Panagiotis Kouvaros, Alessio Lomuscio; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3809-3825

Minimax Optimal Nonsmooth Nonparametric Regression via Fractional Laplacian Eigenmaps

Zhaoyang Shi, Krishna Balasubramanian, Wolfgang Polonik; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3826-3845

Critical Influence of Overparameterization on Sharpness-aware Minimization

Sungbin Shin, Dongyeop Lee, Maksym Andriushchenko, Namhoon Lee; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3846-3877

The Causal Information Bottleneck and Optimal Causal Variable Abstractions

Francisco N. F. Q. Simoes, Mehdi Dastani, Thijs van Ommen; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3878-3897

Truthful Elicitation of Imprecise Forecasts

Anurag Singh, Siu Lun Chau, Krikamol Muandet; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3898-3919

Learning from Label Proportions and Covariate-shifted Instances

Sagalpreet Singh, Navodita Sharma, Shreyas Havaldar, Rishi Saket, Aravindan Raghuveer; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3920-3938

Approximate Bayesian Inference via Bitstring Representations

Aleksanteri Sladek, Martin Trapp, Arno Solin; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3939-3957

Proxy-informed Bayesian transfer learning with unknown sources

Sabina J. Sloman, Julien Martinelli, Samuel Kaski; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3958-3978

Privacy-Preserving Neural Processes for Probabilistic User Modeling

Amir Sonee, Haripriya Harikumar, Alex Hämäläinen, Lukas Prediger, Samuel Kaski; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3979-3998

RDI: An adversarial robustness evaluation metric for deep neural networks based on model statistical features

Jialei Song, Xingquan Zuo, Feiyang Wang, Hai Huang, Tianle Zhang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:3999-4012

Pure and Strong Nash Equilibrium Computation in Compactly Representable Aggregate Games

Jared Soundy, Mohammad T. Irfan, Hau Chan; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4013-4033

Nonparametric Bayesian inference of item-level features in classifier combination

Patrick Stinson, Nikolaus Kriegeskorte; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4034-4043

On Constant Regret for Low-Rank MDPs

Alexander Sturm, Sebastian Tschiatschek; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4044-4079

Adaptive Human-Robot Collaboration using Type-Based IRL

Prasanth Sengadu Suresh, Prashant Doshi, Bikramjit Banerjee; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4080-4091

Transparent Trade-offs between Properties of Explanations

Hiwot Belay Tadesse, Alihan Hüyük, Yaniv Yacoby, Weiwei Pan, Finale Doshi-Velez; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4092-4112

FALCON: Adaptive Cross-Domain APT Attack Investigation with Federated Causal Learning

Jialu Tang, Yali Gao, Xiaoyong Li, Jiawei Li, Shui Yu, Binxing Fang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4113-4131

InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis

Shiqin Tang, Shujian Yu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4132-4144

Metric Learning in an RKHS

Gokcan Tatli, Yi Chen, Blake Mason, Robert D Nowak, Ramya Korlakai Vinayak; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4145-4164

A Unified Data Representation Learning for Non-parametric Two-sample Testing

Xunye Tian, Liuhua Peng, Zhijian Zhou, Mingming Gong, Arthur Gretton, Feng Liu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4165-4184

Adversarial Training May Induce Deteriorating Distributions

Runzhi Tian, Yongyi Mao; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4185-4203

On Continuous Monitoring of Risk Violations under Unknown Shift

Alexander Timans, Rajeev Verma, Eric Nalisnick, Christian A. Naesseth; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4204-4226

HDP-Flow: Generalizable Bayesian Nonparametric Model for Time Series State Discovery

Sana Tonekaboni, Tina Behrouzi, Addison Weatherhead, Emily Fox, David Blei, Anna Goldenberg; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4227-4250

Optimal Transport Alignment of User Preferences from Ratings and Texts

Nhu-Thuat Tran, Hady W. Lauw; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4251-4265

Black-box Optimization with Unknown Constraints via Overparameterized Deep Neural Networks

Dat Phan Trong, Hung The Tran, Sunil Gupta; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4266-4289

EERO: Early Exit with Reject Option for Efficient Classification with limited budget

Florian Valade, Mohamed Hebiri, Paul Gay; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4290-4308

Probabilistic Embeddings for Frozen Vision-Language Models: Uncertainty Quantification with Gaussian Process Latent Variable Models

Aishwarya Venkataramanan, Paul Bodesheim, Joachim Denzler; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4309-4328

Offline Changepoint Detection With Gaussian Processes

Janneke Verbeek, Tom Heskes, Yuliya Shapovalova; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4329-4348

Hindsight Merging: Diverse Data Generation with Language Models

Veniamin Veselovsky, Benedikt Stroebl, Gianluca Bencomo, Dilip Arumugam, Lisa Schut, Arvind Narayanan, Thomas L. Griffiths; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4349-4369

A Trajectory-Based Bayesian Approach to Multi-Objective Hyperparameter Optimization with Epoch-Aware Trade-Offs

Wenyu Wang, Zheyi Fan, Szu Hui Ng; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4370-4394

Targeted Learning for Variable Importance

Xiaohan Wang, Yunzhe Zhou, Giles Hooker; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4395-4410

Nonparametric Bayesian Multi-Facet Clustering for Longitudinal Data

Luwei Wang, Kieran Richards, Sohan Seth; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4411-4442

A Parallel Network for LRCT Segmentation and Uncertainty Mitigation with Fuzzy Sets

Shiyi Wang, Yang Nan, Xiaodan Xing, Yingying Fang, Simon Lf Walsh, Guang Yang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4443-4457

VADIS: Investigating Inter-View Representation Biases for Multi-View Partial Multi-Label Learning

Jie Wang, Ning Xu, Xin Geng; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4458-4471

MutualNeRF: Improve the Performance of NeRF under Limited Samples with Mutual Information Theory

Zifan Wang, Jingwei Li, Yitang Li, Yunze Liu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4472-4488

Informative Synthetic Data Generation for Thorax Disease Classification

Yancheng Wang, Rajeev Goel, Marko Jojic, Alvin C. Silva, Teresa Wu, Yingzhen Yang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4489-4514

A Mirror Descent Perspective of Smoothed Sign Descent

Shuyang Wang, Diego Klabjan; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4515-4542

Geodesic Slice Sampler for Multimodal Distributions with Strong Curvature

Bernardo Williams, Hanlin Yu, Hoang Phuc Hau Luu, Georgios Arvanitidis, Arto Klami; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4543-4564

Online Generalized Magician’s Problem with Multiple Workers

Ruoyu Wu, Wei Bao, Ben Liang, Liming Ge; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4565-4596

Group-Agent Reinforcement Learning with Heterogeneous Agents

Kaiyue Wu, Xiao-Jun Zeng, Tingting Mu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4597-4617

FlightPatchNet: Multi-Scale Patch Network with Differential Coding for Short-Term Flight Trajectory Prediction

Lan Wu, Xuebin Wang, Ruijuan Chu, Guangyi Liu, Jing Zhang, Linyu Wang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4618-4635

The Consistency Hypothesis in Uncertainty Quantification for Large Language Models

Quan Xiao, Debarun Bhattacharjya, Balaji Ganesan, Radu Marinescu, Katya Mirylenka, Nhan H Pham, Michael Glass, Junkyu Lee; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4636-4651

Learning Multi-interest Embedding with Dynamic Graph Cluster for Sequention Recommendation

Xiao Chunjing, Ranhao Guo, Zhang Yongwang, Xiaoming Wu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4652-4662

Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling

Jian Xu, Shian Du, Junmei Yang, Qianli Ma, Delu Zeng, John Paisley; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4663-4680

Dependent Randomized Rounding for Budget Constrained Experimental Design

Khurram Yamin, Edward Kennedy, Bryan Wilder; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4681-4700

Full Network Capacity Framework for Sample-Efficient Deep Reinforcement Learning

Wentao Yang, Xinyue Liu, Yunlong Gao, Wenxin Liang, Linlin Zong, Guanglu Wang, Xianchao Zhang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4701-4714

Best Arm Identification with Possibly Biased Offline Data

Le Yang, Vincent Y. F. Tan, Wang Chi Cheung; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4715-4730

MSCGrapher: Learning Multi-Scale Dynamic Correlations for Multivariate Time Series Forecasting

Xian Yang, Zhenguo Zhang, Shihao Lu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4731-4751

Flow-Based Delayed Hawkes Process

Chao Yang, Wendi Ren, Shuang Li; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4752-4774

$σ$-Maximal Ancestral Graphs

Binghua Yao, Joris Marten Mooij; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4775-4805

How Likely Are Two Voting Rules Different?

Ziqi Yu, Lirong Xia, Qishen Han, Chengkai Zhang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4806-4825

Corruption-Robust Variance-aware Algorithms for Generalized Linear Bandits under Heavy-tailed Rewards

Qingyuan Yu, Euijin Baek, Xiang Li, Qiang Sun; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4826-4843

Complete Characterization for Adjustment in Summary Causal Graphs of Time Series

Clément Yvernes, Emilie Devijver, Eric Gaussier; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4844-4871

Label Distribution Learning using the Squared Neural Family on the Probability Simplex

Daokun Zhang, Russell Tsuchida, Dino Sejdinovic; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4872-4888

Learning to Stabilize Unknown LTI Systems on a Single Trajectory under Stochastic Noise

Ziyi Zhang, yorie nakahira, Guannan Qu; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4889-4919

Instance-Wise Monotonic Calibration by Constrained Transformation

Yunrui Zhang, Gustavo Enrique Batista, Salil S. Kanhere; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4920-4932

Causal Eligibility Traces for Confounding Robust Off-Policy Evaluation

Junzhe Zhang, Elias Bareinboim; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4933-4942

Improving Adversarial Transferability via Decision Boundary Adaptation

Jiayu Zhang, Zhiyu Zhu, Zhibo Jin, Xinyi Wang, Huaming Chen, Kim-Kwang Raymond Choo; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4943-4958

Near-Optimal Regret Bounds for Federated Multi-armed Bandits with Fully Distributed Communication

Haoran Zhang, Xuchuang Wang, Hao-Xu Chen, Hao Qiu, Lin Yang, Yang Gao; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4959-4981

Residual Reweighted Conformal Prediction for Graph Neural Networks

Zheng Zhang, Jie Bao, Zhixin Zhou, nicolo colombo, Lixin Cheng, Rui Luo; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:4982-4999

Finding Interior Optimum of Black-box Constrained Objective with Bayesian Optimization

Fengxue Zhang, Yuxin Chen; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:5000-5029

Sample and Computationally Efficient Continuous-Time Reinforcement Learning with General Function Approximation

Runze Zhao, Yue Yu, Adams Yiyue Zhu, Chen Yang, Dongruo Zhou; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:5030-5057

Towards Provably Efficient Learning of Imperfect Information Extensive-Form Games with Linear Function Approximation

Canzhe Zhao, Shuze Chen, Weiming Liu, Haobo Fu, Qiang Fu, Shuai Li; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:5058-5083

Collapsing Sequence-Level Data-Policy Coverage via Poisoning Attack in Offline Reinforcement Learning

Xue Zhou, Dapeng Man, Chen Xu, Fanyi Zeng, Tao Liu, Huan Wang, Shucheng He, Chaoyang Gao, Wu Yang; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:5084-5098

Learning to Sample in Stochastic Optimization

Sijia Zhou, Yunwen Lei, Ata Kaban; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:5099-5115

MSP-SR: Multi-Stage Probabilistic Generative Super Resolution with Scarce High-Resolution Data

Ruike Zhu, Matthew Charles Weston, Hanwen Zhang, Arindam Banerjee; Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:5116-5134

subscribe via RSS