[edit]

Volume 244: Uncertainty in Artificial Intelligence, 15-19 July 2024, Universitat Pompeu Fabra, Barcelona, Spain

[edit]

Editors: Negar Kiyavash, Joris M. Mooij

[bib][citeproc]

Contents:

Preface

Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence – Preface

Negar Kiyavash, Joris M. Mooij; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:i-xi

Papers

Convergence Behavior of an Adversarial Weak Supervision Method

Steven An, Sanjoy Dasgupta; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1-49

Iterated INLA for State and Parameter Estimation in Nonlinear Dynamical Systems

Rafael Anderka, Marc Peter Deisenroth, So Takao; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:50-76

CSS: Contrastive Semantic Similarities for Uncertainty Quantification of LLMs

Shuang Ao, Stefan Rueger, Advaith Siddharthan; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:77-87

Unified PAC-Bayesian Study of Pessimism for Offline Policy Learning with Regularized Importance Sampling

Imad Aouali, Victor-Emmanuel Brunel, David Rohde, Anna Korba; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:88-109

Latent Representation Entropy Density for Distribution Shift Detection

Fabio Arnez, Daniel Alfonso Montoya Vasquez, Ansgar Radermacher, François Terrier; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:110-137

FedAST: Federated Asynchronous Simultaneous Training

Baris Askin, Pranay Sharma, Carlee Joe-Wong, Gauri Joshi; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:138-172

Identifiability of total effects from abstractions of time series causal graphs

Charles K. Assaad, Emilie Devijver, Eric Gaussier, Gregor Goessler, Anouar Meynaoui; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:173-185

On the Capacitated Facility Location Problem with Scarce Resources

Gennaro Auricchio, Harry J. Clough, Jie Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:186-202

Mitigating Overconfidence in Out-of-Distribution Detection by Capturing Extreme Activations

Mohammad Azizmalayeri, Ameen Abu-Hanna, Giovanni Cinà; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:203-224

Inference in Probabilistic Answer Set Programs with Imprecise Probabilities via Optimization

Damiano Azzolini, Fabrizio Riguzzi; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:225-234

Differentially Private No-regret Exploration in Adversarial Markov Decision Processes

Shaojie Bai, Lanting Zeng, Chengcheng Zhao, Xiaoming Duan, Mohammad Sadegh Talebi, Peng Cheng, Jiming Chen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:235-272

Walking the Values in Bayesian Inverse Reinforcement Learning

Ondrej Bajgar, Alessandro Abate, Konstantinos Gatsis, Michael Osborne; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:273-287

Learning Accurate and Interpretable Decision Trees

Maria-Florina Balcan, Dravyansh Sharma; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:288-307

Towards Bounding Causal Effects under Markov Equivalence

Alexis Bellot; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:308-332

Linearly Constrained Gaussian Processes are SkewGPs: application to Monotonic Preference Learning and Desirability

Alessio Benavoli, Dario Azzimonti; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:333-348

MetaCOG: A Heirarchical Probabilistic Model for Learning Meta-Cognitive Visual Representations

Marlene Berke, Zhangir Azerbayev, Mario Belledonne, Zenna Tavares, Julian Jara-Ettinger; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:349-359

Shedding Light on Large Generative Networks: Estimating Epistemic Uncertainty in Diffusion Models

Lucas Berry, Axel Brando, David Meger; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:360-376

Publishing Number of Walks and Katz Centrality under Local Differential Privacy

Louis Betzer, Vorapong Suppakitpaisarn, Quentin Hillebrand; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:377-393

Using Autodiff to Estimate Posterior Moments, Marginals and Samples

Sam Bowyer, Thomas Heap, Laurence Aitchison; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:394-417

Polynomial Semantics of Tractable Probabilistic Circuits

Oliver Broadrick, Honghua Zhang, Guy Van den Broeck; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:418-429

Products, Abstractions and Inclusions of Causal Spaces

Simon Buchholz, Junhyung Park, Bernhard Schölkopf; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:430-449

Revisiting Kernel Attention with Correlated Gaussian Process Representation

Long Minh Bui, Tho Tran Huu, Duy Dinh, Tan Minh Nguyen, Trong Nghia Hoang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:450-470

Sample Average Approximation for Black-Box Variational Inference

Javier Burroni, Justin Domke, Daniel Sheldon; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:471-498

Privacy-Aware Randomized Quantization via Linear Programming

Zhongteng Cai, Xueru Zhang, Mohammad Mahdi Khalili; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:499-516

Fair Active Learning in Low-Data Regimes

Romain Camilleri, Andrew Wagenmaker, Jamie Morgenstern, Lalit Jain, Kevin Jamieson; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:517-531

Multi-Relational Structural Entropy

Yuwei Cao, Hao Peng, Angsheng Li, Chenyu You, Zhifeng Hao, Philip S. Yu; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:532-546

How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods for Selective Classification with Deep Neural Networks

Luı́s Felipe Cattelan, Danilo Silva; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:547-584

QuantProb: Generalizing Probabilities along with Predictions for a Pre-trained Classifier

Aditya Challa, Soma Dhavala, Snehanshu Saha; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:585-602

Generalization and Learnability in Multiple Instance Regression

Kushal Chauhan, Rishi Saket, Lorne Applebaum, Ashwinkumar Badanidiyuru, Chandan Giri, Aravindan Raghuveer; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:603-618

Gradient descent in matrix factorization: Understanding large initialization

Hengchao Chen, Xin Chen, Mohamad Elmasri, Qiang Sun; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:619-647

Conditional Bayesian Quadrature

Zonghao Chen, Masha Naslidnyk, Arthur Gretton, Francois-Xavier Briol; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:648-684

Adaptive Time-Stepping Schedules for Diffusion Models

Yuzhu Chen, Fengxiang He, Shi Fu, Xinmei Tian, Dacheng Tao; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:685-697

SMuCo: Reinforcement Learning for Visual Control via Sequential Multi-view Total Correlation

Tong Cheng, Hang Dong, Lu Wang, Bo Qiao, Qingwei Lin, Saravan Rajmohan, Thomas Moscibroda; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:698-717

Inference for Optimal Linear Treatment Regimes in Personalized Decision-making

Yuwen Cheng, Shu Yang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:718-735

End-to-end Conditional Robust Optimization

Abhilash Reddy Chenreddy, Erick Delage; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:736-748

Differentiable Pareto-Smoothed Weighting for High-Dimensional Heterogeneous Treatment Effect Estimation

Yoichi Chikahara, Kansei Ushiyama; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:749-762

Fast Interactive Search under a Scale-Free Comparison Oracle

Daniyar Chumbalov, Lars Klein, Lucas Maystre, Matthias Grossglauser; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:763-786

Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression

Lucas Clarté, Adrien Vandenbroucque, Guillaume Dalle, Bruno Loureiro, Florent Krzakala, Lenka Zdeborová; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:787-819

Towards Minimax Optimality of Model-based Robust Reinforcement Learning

Pierre Clavier, Erwan Le Pennec, Matthieu Geist; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:820-855

Towards Representation Learning for Weighting Problems in Design-Based Causal Inference

Oscar Clivio, Avi Feller, Chris Holmes; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:856-880

Normalizing Flows for Conformal Regression

Nicolò Colombo; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:881-893

Power Mean Estimation in Stochastic Monte-Carlo Tree Search

Tuan Dam, Odalric-Ambrym Maillard, Emilie Kaufmann; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:894-918

Linear Opinion Pooling for Uncertainty Quantification on Graphs

Clemens Damke, Eyke Hüllermeier; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:919-929

Can we Defend Against the Unknown? An Empirical Study About Threshold Selection for Neural Network Monitoring

Khoi Tran Dang, Kevin Delmas, Jérémie Guiochet, Joris Guérin; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:930-942

Detecting critical treatment effect bias in small subgroups

Piersilvio De Bartolomeis, Javier Abad, Konstantin Donhauser, Fanny Yang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:943-965

The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data

Alexander Decruyenaere, Heidelinde Dehaene, Paloma Rabaey, Christiaan Polet, Johan Decruyenaere, Stijn Vansteelandt, Thomas Demeester; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:966-996

Discrete Probabilistic Inference as Control in Multi-path Environments

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, Yoshua Bengio; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:997-1021

On Convergence of Federated Averaging Langevin Dynamics

Wei Deng, Qian Zhang, Yian Ma, Zhao Song, Guang Lin; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1022-1054

Reflected Schrödinger Bridge for Constrained Generative Modeling

Wei Deng, Yu Chen, Nicole Tianjiao Yang, Hengrong Du, Qi Feng, Ricky Tian Qi Chen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1055-1082

Calibrated and Conformal Propensity Scores for Causal Effect Estimation

Shachi Deshpande, Volodymyr Kuleshov; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1083-1111

Learning to Rank for Active Learning via Multi-Task Bilevel Optimization

Zixin Ding, Si Chen, Ruoxi Jia, Yuxin Chen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1112-1128

End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

My H. Dinh, James Kotary, Ferdinando Fioretto; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1129-1145

Online Policy Optimization for Robust Markov Decision Process

Jing Dong, Jingwei Li, Baoxiang Wang, Jingzhao Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1146-1175

Learning Distributionally Robust Tractable Probabilistic Models in Continuous Domains

Hailiang Dong, James Amato, Vibhav Gogate, Nicholas Ruozzi; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1176-1188

Bandits with Knapsacks and Predictions

Davide Drago, Andrea Celli, Marek Elias; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1189-1206

Approximate Bayesian Computation with Path Signatures

Joel Dyer, Patrick Cannon, Sebastian M. Schmon; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1207-1231

Vertical Validation: Evaluating Implicit Generative Models for Graphs on Thin Support Regions

Mai Elkady, Thu Bui, Bruno Ribeiro, David Inouye; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1232-1256

EntProp: High Entropy Propagation for Improving Accuracy and Robustness

Shohei Enomoto; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1257-1270

Multi-fidelity Bayesian Optimization with Multiple Information Sources of Input-dependent Fidelity

Mingzhou Fan, Byung-Jun Yoon, Edward Dougherty, Nathan Urban, Francis Alexander, Raymundo Arróyave, Xiaoning Qian; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1271-1293

Center-Based Relaxed Learning Against Membership Inference Attacks

Xingli Fang, Jung-Eun Kim; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1294-1306

Enhancing Patient Recruitment Response in Clinical Trials: an Adaptive Learning Framework

Xinying Fang, Shouhao Zhou; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1307-1322

Generalized Expected Utility as a Universal Decision Rule – A Step Forward

Hélène Fargier, Pierre Pomeret-Coquot; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1323-1338

Last-iterate Convergence Separation between Extra-gradient and Optimism in Constrained Periodic Games

Yi Feng, Ping Li, Ioannis Panageas, Xiao Wang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1339-1370

Guaranteeing Robustness Against Real-World Perturbations In Time Series Classification Using Conformalized Randomized Smoothing

Nicola Franco, Jakob Spiegelberg, Jeanette Miriam Lorenz, Stephan Günnemann; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1371-1388

Consistency Regularization for Domain Generalization with Logit Attribution Matching

Han Gao, Kaican Li, Weiyan Xie, Zhi Lin, Yongxiang Huang, Luning Wang, Caleb Cao, Nevin Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1389-1407

Uncertainty Estimation with Recursive Feature Machines

Daniel Gedon, Amirhesam Abedsoltan, Thomas B. Schön, Mikhail Belkin; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1408-1437

Bootstrap Your Conversions: Thompson Sampling for Partially Observable Delayed Rewards

Marco Gigli, Fabio Stella; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1438-1452

GeONet: a neural operator for learning the Wasserstein geodesic

Andrew Gracyk, Xiaohui Chen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1453-1478

ContextFlow++: Generalist-Specialist Flow-based Generative Models with Mixed-variable Context Encoding

Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1479-1490

One Shot Inverse Reinforcement Learning for Stochastic Linear Bandits

Etash Guha, Jim James, Krishna Acharya, Vidya Muthukumar, Ashwin Pananjady; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1491-1512

Characterizing Data Point Vulnerability as Average-Case Robustness

Tessa Han, Suraj Srinivas, Himabindu Lakkaraju; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1513-1540

No-Regret Learning of Nash Equilibrium for Black-Box Games via Gaussian Processes

Minbiao Han, Fengxue Zhang, Yuxin Chen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1541-1557

Faster Perfect Sampling of Bayesian Network Structures

Juha Harviainen, Mikko Koivisto; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1558-1568

Adjustment Identification Distance: A gadjid for Causal Structure Learning

Leonard Henckel, Theo Würtzen, Sebastian Weichwald; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1569-1598

On Overcoming Miscalibrated Conversational Priors in LLM-based ChatBots

Christine Herlihy, Jennifer Neville, Tobias Schnabel, Adith Swaminathan; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1599-1620

Neural Active Learning Meets the Partial Monitoring Framework

Maxime Heuillet, Ola Ahmad, Audrey Durand; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1621-1639

Quantum Kernelized Bandits

Yasunari Hikima, Kazunori Murao, Sho Takemori, Yuhei Umeda; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1640-1657

Recursively-Constrained Partially Observable Markov Decision Processes

Qi Heng Ho, Tyler Becker, Benjamin Kraske, Zakariya Laouar, Martin Feather, Federico Rossi, Morteza Lahijanian, Zachary Sunberg; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1658-1680

Sound Heuristic Search Value Iteration for Undiscounted POMDPs with Reachability Objectives

Qi Heng Ho, Martin Feather, Federico Rossi, Zachary Sunberg, Morteza Lahijanian; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1681-1697

A Global Markov Property for Solutions of Stochastic Difference Equations and the corresponding Full Time Graphs

Tom Hochsprung, Jakob Runge, Andreas Gerhardus; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1698-1726

Revisiting Convergence of AdaGrad with Relaxed Assumptions

Yusu Hong, Junhong Lin; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1727-1750

Equilibrium Computation in Multidimensional Congestion Games: CSP and Learning Dynamics Approaches

Mohammad T. Irfan, Hau Chan, Jared Soundy; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1751-1779

Early-Exit Neural Networks with Nested Prediction Sets

Metod Jazbec, Patrick Forré, Stephan Mandt, Dan Zhang, Eric Nalisnick; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1780-1796

On the Convergence of Hierarchical Federated Learning with Partial Worker Participation

Xiaohan Jiang, Hongbin Zhu; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1797-1824

Adaptive Softmax Trees for Many-Class Classification

Rasul Kairgeldin, Magzhan Gabidolla, Miguel Carreira-Perpiñán; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1825-1841

Towards Scalable Bayesian Transformers: Investigating stochastic subset selection for NLP

Peter Johannes Tejlgaard Kampen, Gustav Ragnar Stoettrup Als, Michael Riis Andersen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1842-1862

Low-rank Matrix Bandits with Heavy-tailed Rewards

Yue Kang, Cho-Jui Hsieh, Thomas Chun Man Lee; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1863-1889

Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection

Moussa Kassem-Sbeyti, Michelle Karg, Christian Wirth, Nadja Klein, Sahin Albayrak; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1890-1900

Probabilities of Causation for Continuous and Vector Variables

Yuta Kawakami, Manabu Kuroki, Jin Tian; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1901-1921

Identification and Estimation of Conditional Average Partial Causal Effects via Instrumental Variable

Yuta Kawakami, Manabu Kuroki, Jin Tian; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1922-1952

Targeted Reduction of Causal Models

Armin Kekić, Bernhard Schölkopf, Michel Besserve; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1953-1980

Active Learning Framework for Incomplete Networks

Tung Khong, Cong Tran, Cuong Pham; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1981-1998

Causal Discovery with Deductive Reasoning: One Less Problem

Jonghwan Kim, Inwoo Hwang, Sanghack Lee; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:1999-2017

ILP-FORMER: Solving Integer Linear Programming with Sequence to Multi-Label Learning

Shufeng Kong, Caihua Liu, Carla Gomes; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2018-2028

How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression

Lucas Kook, Chris Kolb, Philipp Schiele, Daniel Dold, Marcel Arpogaus, Cornelius Fritz, Philipp Baumann, Philipp Kopper, Tobias Pielok, Emilio Dorigatti, David Rügamer; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2029-2046

Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions

Patrick Kuiper, Ali Hasan, Wenhao Yang, Yuting Ng, Hoda Bidkhori, Jose Blanchet, Vahid Tarokh; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2047-2063

Optimization Framework for Semi-supervised Attributed Graph Coarsening

Manoj Kumar, Subhanu Halder, Archit Kane, Ruchir Gupta, Sandeep Kumar; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2064-2075

Efficient Monte Carlo Tree Search via On-the-Fly State-Conditioned Action Abstraction

Yunhyeok Kwak, Inwoo Hwang, Dooyoung Kim, Sanghack Lee, Byoung-Tak Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2076-2093

DataSP: A Differential All-to-All Shortest Path Algorithm for Learning Costs and Predicting Paths with Context

Alan Lahoud, Erik Schaffernicht, Johannes Stork; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2094-2112

Quantifying Local Model Validity using Active Learning

Sven Lämmle, Can Bogoclu, Robert Vosshall, Anselm Haselhoff, Dirk Roos; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2113-2135

Common Event Tethering to Improve Prediction of Rare Clinical Events

Quinn Lanners, Qin Weng, Marie-Louise Meng, Matthew M. Engelhard; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2136-2162

Support Recovery in Sparse PCA with General Missing Data

Hanbyul Lee, Qifan Song, Jean Honorio; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2163-2187

A General Identification Algorithm For Data Fusion Problems Under Systematic Selection

Jaron Jia Rong Lee, AmirEmad Ghassami, Ilya Shpitser; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2188-2204

On the Inductive Biases of Demographic Parity-based Fair Learning Algorithms

Haoyu Lei, Amin Gohari, Farzan Farnia; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2205-2225

Label Consistency-based Worker Filtering for Crowdsourcing

Jiao Li, Liangxiao Jiang, Chaoqun Li, Wenjun Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2226-2237

Learning from Crowds with Dual-View K-Nearest Neighbor

Jiao Li, Liangxiao Jiang, Xue Wu, Wenjun Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2238-2249

Optimizing Language Models for Human Preferences is a Causal Inference Problem

Victoria Lin, Eli Ben-Michael, Louis-Philippe Morency; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2250-2270

Transductive and Inductive Outlier Detection with Robust Autoencoders

Ofir Lindenbaum, Yariv Aizenbud, Yuval Kluger; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2271-2293

Hybrid CtrlFormer: Learning Adaptive Search Space Partition for Hybrid Action Control via Transformer-based Monte Carlo Tree Search

Jiashun Liu, Xiaotian Hao, Jianye Hao, Yan Zheng, Yujing Hu, Changjie Fan, Tangjie Lv, Zhipeng Hu; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2294-2308

Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models

Xinyang Liu, Dongsheng Wang, Bowei Fang, Miaoge Li, Yishi Xu, Zhibin Duan, Bo Chen, Mingyuan Zhou; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2309-2330

Posterior Inference on Shallow Infinitely Wide Bayesian Neural Networks under Weights with Unbounded Variance

Jorge Loria, Anindya Bhadra; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2331-2349

Local Discovery by Partitioning: Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs

Jacqueline Maasch, Weishen Pan, Shantanu Gupta, Volodymyr Kuleshov, Kyra Gan, Fei Wang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2350-2382

Identifying Causal Changes Between Linear Structural Equation Models

Vineet Malik, Kevin Bello, Asish Ghoshal, Jean Honorio; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2383-2398

BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts

Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini, Stefano Teso; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2399-2433

Amortized Variational Inference: When and Why?

Charles C. Margossian, David M. Blei; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2434-2449

Learning relevant contextual variables within Bayesian optimization

Julien Martinelli, Ayush Bharti, Armi Tiihonen, S. T. John, Louis Filstroff, Sabina J. Sloman, Patrick Rinke, Samuel Kaski; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2450-2470

Identifying Homogeneous and Interpretable Groups for Conformal Prediction

Natalia Martinez Gil, Dhaval Patel, Chandra Reddy, Giri Ganapavarapu, Roman Vaculin, Jayant Kalagnanam; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2471-2485

Learning Causal Abstractions of Linear Structural Causal Models

Riccardo Massidda, Sara Magliacane, Davide Bacciu; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2486-2515

Knowledge Intensive Learning of Credal Networks

Saurabh Mathur, Alessandro Antonucci, Sriraam Natarajan; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2516-2526

Quantization of Large Language Models with an Overdetermined Basis

Daniil Merkulov, Daria Cherniuk, Alexander Rudikov, Ivan Oseledets, Ekaterina Muravleva, Aleksandr Mikhalev, Boris Kashin; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2527-2536

Invariant Causal Prediction with Local Models

Alexander Mey, Rui M. Castro; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2537-2559

Characterising Interventions in Causal Games

Manuj Mishra, James Fox, Michael Wooldridge; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2560-2572

Approximation Algorithms for Observer Aware MDPs

Shuwa Miura, Olivier Buffet, Shlomo Zilberstein; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2573-2586

Evaluating Bayesian deep learning for radio galaxy classification

Devina Mohan, Anna M. M. Scaife; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2587-2597

Optimistic Regret Bounds for Online Learning in Adversarial Markov Decision Processes

Sang Bin Moon, Abolfazl Hashemi; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2598-2622

Partial identification of the maximum mean discrepancy with mismeasured data

Ron Nafshi, Maggie Makar; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2623-2645

General Markov Model for Solving Patrolling Games

Andrzej Nagórko, Marcin Waniek, Małgorzata Róg, Michał Godziszewski, Barbara Rosiak, Tomasz Paweł Michalak; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2646-2669

Efficient Interactive Maximization of BP and Weakly Submodular Objectives

Adhyyan Narang, Omid Sadeghi, Lillian Ratliff, Maryam Fazel, Jeff Bilmes; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2670-2699

Neural Architecture Search Finds Robust Models by Knowledge Distillation

Utkarsh Nath, Yancheng Wang, Yingzhen Yang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2700-2715

Extremely Greedy Equivalence Search

Achille Nazaret, David Blei; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2716-2745

A Generalized Bayesian Approach to Distribution-on-Distribution Regression

Tin Lok James Ng; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2746-2765

Cold-start Recommendation by Personalized Embedding Region Elicitation

Hieu Trung Nguyen, Duy Nguyen, Khoa Doan, Viet Anh Nguyen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2766-2786

Finite-Time Analysis of Three-Timescale Constrained Actor-Critic and Constrained Natural Actor-Critic Algorithms.

Prashansa Panda, Shalabh Bhatnagar; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2787-2834

Quantifying Representation Reliability in Self-Supervised Learning Models

Young-Jin Park, Hao Wang, Shervin Ardeshir, Navid Azizan; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2835-2860

Value-Based Abstraction Functions for Abstraction Sampling

Bobak Pezeshki, Kalev Kask, Alexander Ihler, Rina Dechter; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2861-2901

Non-stationary Domain Generalization: Theory and Algorithm

Thai-Hoang Pham, Xueru Zhang, Ping Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2902-2927

Zero Inflation as a Missing Data Problem: a Proxy-based Approach

Trung Phung, Jaron Lee, Opeyemi Oladapo-Shittu, Eili Klein, Ayse Gurses, Susan Hannum, Kimberly Weems, Jill Marsteller, Sara Cosgrove, Sara Keller, Ilya Shpitser; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2928-2955

DistriBlock: Identifying adversarial audio samples by leveraging characteristics of the output distribution

Matı́as Pizarro, Dorothea Kolossa, Asja Fisher; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2956-2988

Neural Optimal Transport with Lagrangian Costs

Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, Brandon Amos; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2989-3003

$χ$SPN: Characteristic Interventional Sum-Product Networks for Causal Inference in Hybrid Domains

Harsh Poonia, Moritz Willig, Zhongjie Yu, Matej Ze\vcević, Kristian Kersting, Devendra Singh Dhami; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3004-3020

Graph Feedback Bandits with Similar Arms

Han Qi, Guo Fei, Li Zhu; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3021-3040

Performative Reinforcement Learning in Gradually Shifting Environments

Ben Rank, Stelios Triantafyllou, Debmalya Mandal, Goran Radanovic; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3041-3075

Decision-Focused Evaluation of Worst-Case Distribution Shift

Kevin Ren, Yewon Byun, Bryan Wilder; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3076-3093

To smooth a cloud or to pin it down: Expressiveness guarantees and insights on score matching in denoising diffusion models

Teodora Reu, Francisco Vargas, Anna Kerekes, Michael Bronstein; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3094-3120

Anomaly Detection with Variance Stabilized Density Estimation

Amit Rozner, Barak Battash, Henry Li, Lior Wolf, Ofir Lindenbaum; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3121-3137

A Graph Theoretic Approach for Preference Learning with Feature Information

Aadirupa Saha, Arun Rajkumar; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3138-3158

Label-wise Aleatoric and Epistemic Uncertainty Quantification

Yusuf Sale, Paul Hofman, Timo Löhr, Lisa Wimmer, Thomas Nagler, Eyke Hüllermeier; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3159-3179

Unsupervised Feature Selection towards Pattern Discrimination Power

Wangduk Seo, Jaesung Lee; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3180-3197

Cooperative Meta-Learning with Gradient Augmentation

Jongyun Shin, Seungjin Han, Jangho Kim; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3198-3210

Response Time Improves Gaussian Process Models for Perception and Preferences

Michael Shvartsman, Benjamin Letham, Eytan Bakshy, Stephen Keeley; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3211-3226

BanditQ:Fair Bandits with Guaranteed Rewards

Abhishek Sinha; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3227-3244

Bayesian Active Learning in the Presence of Nuisance Parameters

Sabina J. Sloman, Ayush Bharti, Julien Martinelli, Samuel Kaski; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3245-3263

Memorization Capacity for Additive Fine-Tuning with Small ReLU Networks

Jy-yong Sohn, Dohyun Kwon, Seoyeon An, Kangwook Lee; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3264-3278

Computing Low-Entropy Couplings for Large-Support Distributions

Samuel Sokota, Dylan Sam, Christian Schroeder de Witt, Spencer Compton, Jakob Foerster, J. Zico Kolter; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3279-3298

Multi-layer random features and the approximation power of neural networks

Rustem Takhanov; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3299-3322

A Homogenization Approach for Gradient-Dominated Stochastic Optimization

Jiyuan Tan, Chenyu Xue, Chuwen Zhang, Qi Deng, Dongdong Ge, Yinyu Ye; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3323-3344

Localised Natural Causal Learning Algorithms for Weak Consistency Conditions

Kai Teh, Kayvan Sadeghi, Terry Soo; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3345-3355

Fast Reliability Estimation for Neural Networks with Adversarial Attack-Driven Importance Sampling

Karim Tit, Teddy Furon; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3356-3367

Bayesian Pseudo-Coresets via Contrastive Divergence

Piyush Tiwary, Kumar Shubham, Vivek V. Kashyap, Prathosh A. P.; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3368-3390

Offline Bayesian Aleatoric and Epistemic Uncertainty Quantification and Posterior Value Optimisation in Finite-State MDPs

Filippo Valdettaro, Aldo Faisal; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3391-3409

Efficiently Deciding Algebraic Equivalence of Bow-Free Acyclic Path Diagrams

Thijs van Ommen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3410-3424

Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks

Shyam Venkatasubramanian, Ahmed Aloui, Vahid Tarokh; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3425-3447

Group Fairness in Predict-Then-Optimize Settings for Restless Bandits

Shresth Verma, Yunfan Zhao, Sanket Shah, Niclas Boehmer, Aparna Taneja, Milind Tambe; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3448-3469

Model-Free Robust Reinforcement Learning with Sample Complexity Analysis

Yudan Wang, Shaofeng Zou, Yue Wang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3470-3513

Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States

Ziqiao Wang, Yongyi Mao; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3514-3539

Pure Exploration in Asynchronous Federated Bandits

Zichen Wang, Chuanhao Li, Chenyu Song, Lianghui Wang, Quanquan Gu, Huazheng Wang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3540-3570

Metric Learning from Limited Pairwise Preference Comparisons

Zhi Wang, Geelon So, Ramya Korlakai Vinayak; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3571-3602

AutoDrop: Training Deep Learning Models with Automatic Learning Rate Drop

Jing Wang, Yunfei Teng, Anna Choromanska; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3603-3629

Bias-aware Boolean Matrix Factorization Using Disentangled Representation Learning

Xiao Wang, Jia Wang, Tong Zhao, Yijie Wang, Nan Zhang, Yong Zang, Sha Cao, Chi Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3630-3642

Beyond Dirichlet-based Models: When Bayesian Neural Networks Meet Evidential Deep Learning

Hanjing Wang, Qiang Ji; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3643-3665

Stein Random Feature Regression

Houston Warren, Rafael Oliveira, Fabio Ramos; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3666-3688

Bounding causal effects with leaky instruments

David Watson, Jordan Penn, Lee Gunderson, Gecia Bravo-Hermsdorff, Afsaneh Mastouri, Ricardo Silva; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3689-3710

Robust Entropy Search for Safe Efficient Bayesian Optimization

Dorina Weichert, Alexander Kister, Sebastian Houben, Patrick Link, Gunar Ernis; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3711-3729

Hidden Population Estimation with Indirect Inference and Auxiliary Information

Justin Weltz, Eric Laber, Alexander Volfovsky; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3730-3746

GCVR: Reconstruction from Cross-View Enable Sufficient and Robust Graph Contrastive Learning

Qianlong Wen, Zhongyu Ouyang, Chunhui Zhang, Yiyue Qian, Chuxu Zhang, Yanfang Ye; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3747-3764

Understanding Pathologies of Deep Heteroskedastic Regression

Eliot Wong-Toi, Alex Boyd, Vincent Fortuin, Stephan Mandt; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3765-3790

Functional Wasserstein Bridge Inference for Bayesian Deep Learning

Mengjing Wu, Junyu Xuan, Jie Lu; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3791-3815

RE-SORT: Removing Spurious Correlation in Multilevel Interaction for CTR Prediction

Songli Wu, Liang Du, Jiaqi Yang, Yuai Wang, Dechuan Zhan, Shuang Zhao, Zixun Sun; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3816-3828

Pix2Code: Learning to Compose Neural Visual Concepts as Programs

Antonia Wüst, Wolfgang Stammer, Quentin Delfosse, Devendra Singh Dhami, Kristian Kersting; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3829-3852

Base Models for Parabolic Partial Differential Equations

Xingzi Xu, Ali Hasan, Jie Ding, Vahid Tarokh; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3853-3878

\ensuremathα-Former: Local-Feature-Aware (L-FA) Transformer

Zhi Xu, Bin Sun, Yue Bai, Yun Fu; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3879-3892

Functional Wasserstein Variational Policy Optimization

Junyu Xuan, Mengjing Wu, Zihe Liu, Jie Lu; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3893-3911

Investigating the Impact of Model Width and Density on Generalization in Presence of Label Noise

Yihao Xue, Kyle Whitecross, Baharan Mirzasoleiman; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3912-3935

Graph Contrastive Learning under Heterophily via Graph Filters

Wenhan Yang, Baharan Mirzasoleiman; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3936-3955

Statistical and Causal Robustness for Causal Null Hypothesis Tests

Junhui Yang, Rohit Bhattacharya, Youjin Lee, Ted Westling; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3956-3978

On Hardware-efficient Inference in Probabilistic Circuits

Lingyun Yao, Martin Trapp, Jelin Leslin, Gaurav Singh, Peng Zhang, Karthekeyan Periasamy, Martin Andraud; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3979-3996

Masking the Unknown: Leveraging Masked Samples for Enhanced Data Augmentation

Xun Yao, Zijian Huang, Xinrong Hu, Jie Yang, Yi Guo; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3997-4010

Domain Adaptation with Cauchy-Schwarz Divergence

Wenzhe Yin, Shujian Yu, Yicong Lin, Jie Liu, Jan-Jakob Sonke, Efstratios Gavves; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4011-4040

Offline Reward Perturbation Boosts Distributional Shift in Online RL

Zishun Yu, Siteng Kang, Xinhua Zhang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4041-4055

Decentralized Online Learning in General-Sum Stackelberg Games

Yaolong Yu, Haipeng Chen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4056-4077

Probabilistic reconciliation of mixed-type hierarchical time series

Lorenzo Zambon, Dario Azzimonti, Nicolò Rubattu, Giorgio Corani; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4078-4095

Dirichlet Continual Learning: Tackling Catastrophic Forgetting in NLP

Min Zeng, Haiqin Yang, Wei Xue, Qifeng Liu, Yike Guo; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4096-4108

Causally Abstracted Multi-armed Bandits

Fabio Massimo Zennaro, Nicholas Bishop, Joel Dyer, Yorgos Felekis, Anisoara Calinescu, Michael Wooldridge, Theodoros Damoulas; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4109-4139

Partial Identification with Proxy of Latent Confoundings via Sum-of-ratios Fractional Programming

Zhiheng Zhang, Xinyan Su; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4140-4172

Decentralized Two-Sided Bandit Learning in Matching Market

Yirui Zhang, Zhixuan Fang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4173-4191

Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem

Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, Jing Sun; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4192-4208

Neighbor Similarity and Multimodal Alignment based Product Recommendation Study

Zhiqiang Zhang, Yongqiang Jiang, Qian Gao, Zhipeng Wang; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4209-4218

Exploring High-dimensional Search Space via Voronoi Graph Traversing

Aidong Zhao, Xuyang Zhao, Tianchen Gu, Zhaori Bi, Xinwei Sun, Changhao Yan, Fan Yang, Dian Zhou, Xuan Zeng; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4219-4236

Trusted re-weighting for label distribution learning

Zhuoran Zheng, Chen Wu, Yeying Jin, Xiuyi Jia; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4237-4249

Approximate Kernel Density Estimation under Metric-based Local Differential Privacy

Yi Zhou, Yanhao Wang, Long Teng, Qiang Huang, Cen Chen; Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4250-4270

subscribe via RSS