Volume 6: Causality: Objectives and Assessment, 12 December 2008, Whistler, Canada

[edit]

Editors: Isabelle Guyon, Dominik Janzing, Bernhard Schölkopf

[bib][citeproc]

Contents:

Introduction

Causality: Objectives and Assessment

Isabelle Guyon, Dominik Janzing, Bernhard Schölkopf ; PMLR 6:1-42

Fundamentals and Algorithms

Causal Inference

Judea Pearl ; PMLR 6:39-58

Beware of the DAG!

A. Philip Dawid ; PMLR 6:59-86

Causal Discovery as a Game

Frederick Eberhardt ; PMLR 6:87-96

Sparse Causal Discovery in Multivariate Time Series

Stefan Haufe, Klaus-Robert Müller, Guido Nolte, Nicole Krämer ; PMLR 6:97-106

Inference of Graphical Causal Models: Representing the Meaningful Information of Probability Distributions

Jan Lemeire, Kris Steenhaut ; PMLR 6:107-120

Bayesian Algorithms for Causal Data Mining

Subramani Mani, Constantin F. Aliferis, Alexander Statnikov ; PMLR 6:121-136

When causality matters for prediction: investigating the practical tradeoffs

Robert E. Tillman, Peter Spirtes ; PMLR 6:137-146

Challenge Contributions

Distinguishing between cause and effect

Joris Mooij, Dominik Janzing ; PMLR 6:147-156

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Kun Zhang, Aapo Hyvärinen ; PMLR 6:157-164

Structure Learning in Causal Cyclic Networks

Sleiman Itani, Mesrob Ohannessian, Karen Sachs, Garry P. Nolan, Munther A. Dahleh ; PMLR 6:165-176

Causal learning without DAGs

David Duvenaud, Daniel Eaton, Kevin Murphy, Mark Schmidt ; PMLR 6:177-190

Discover Local Causal Network around a Target to a Given Depth

You Zhou, Changzhang Wang, Jianxin Yin, Zhi Geng ; PMLR 6:191-202

Fast Committee-Based Structure Learning

Ernest Mwebaze, John A. Quinn ; PMLR 6:203-214

SIGNET: Boolean Rule Determination for Abscisic Acid Signaling

Jerry Jenkins ; PMLR 6:215-224

The Use of Bernoulli Mixture Models for Identifying Corners of a Hypercube and Extracting Boolean Rules From Data

Mehreen Saeed ; PMLR 6:225-236

Reverse Engineering of Asynchronous Boolean Networks via Minimum Explanatory Set and Maximum Likelihood

Cheng Zheng, Zhi Geng ; PMLR 6:237-248

TIED: An Artificially Simulated Dataset with Multiple Markov Boundaries

Alexander Statnikov, Constantin F. Aliferis ; PMLR 6:249-256

Learning Causal Models That Make Correct Manipulation Predictions With Time Series Data

Mark Voortman, Denver Dash, Marek J. Druzdzel ; PMLR 6:257-266

Comparison of Granger Causality and Phase Slope Index

Guido Nolte, Andreas Ziehe, Nicole Krämer, Florin Popescu, Klaus-Robert Müller ; PMLR 6:267-276

Causality Challenge: Benchmarking relevant signal components for effective monitoring and process control

Michael McCann, Yuhua Li, Liam Maguire, Adrian Johnston ; PMLR 6:277-288

subscribe via RSS

This site last compiled Mon, 01 May 2017 20:31:32 +0000
Github Account Copyright © PMLR 2017. All rights reserved.