Volume 77: Asian Conference on Machine Learning, 15-17 November 2017,

[edit]

Editors: Min-Ling Zhang, Yung-Kyun Noh

[bib][citeproc]

Contents:

Preface

Preface

Min-Ling Zhang, Yung-Kyun Noh ; PMLR 77:i-xv

Accepted Papers

Learning Convolutional Neural Networks using Hybrid Orthogonal Projection and Estimation

Hengyue Pan, Hui Jiang ; PMLR 77:1-16

Limits of End-to-End Learning

Tobias Glasmachers ; PMLR 77:17-32

A Study on Trust Region Update Rules in Newton Methods for Large-scale Linear Classification

Chih-Yang Hsia, Ya Zhu, Chih-Jen Lin ; PMLR 77:33-48

Mini-batch Block-coordinate based Stochastic Average Adjusted Gradient Methods to Solve Big Data Problems

Vinod Kumar Chauhan, Kalpana Dahiya, Anuj Sharma ; PMLR 77:49-64

Instance Specific Discriminative Modal Pursuit: A Serialized Approach

Yang Yang, De-Chuan Zhan, Ying Fan, Yuan Jiang ; PMLR 77:65-80

A Quantum-Inspired Ensemble Method and Quantum-Inspired Forest Regressors

Zeke Xie, Issei Sato ; PMLR 77:81-96

Distributionally Robust Groupwise Regularization Estimator

Jose Blanchet, Yang Kang ; PMLR 77:97-112

Multi-view Clustering with Adaptively Learned Graph

Hong Tao, Chenping Hou, Jubo Zhu, Dongyun Yi ; PMLR 77:113-128

Select-and-Evaluate: A Learning Framework for Large-Scale Knowledge Graph Search

F A Rezaur Rahman Chowdhury, Chao Ma, Md Rakibul Islam, Mohammad Hossein Namaki, Mohammad Omar Faruk, Janardhan Rao Doppa ; PMLR 77:129-144

Probability Calibration Trees

Tim Leathart, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer ; PMLR 77:145-160

Learning Predictive Leading Indicators for Forecasting Time Series Systems with Unknown Clusters of Forecast Tasks

Magda Gregorová, Alexandros Kalousis, Stéphane Marchand-Maillet ; PMLR 77:161-176

Locally Smoothed Neural Networks

Liang Pang, Yanyan Lan, Jun Xu, Jiafeng Guo, Xueqi Cheng ; PMLR 77:177-191

Data sparse nonparametric regression with $ε$-insensitive losses

Maxime Sangnier, Olivier Fercoq, Florence d’Alché-Buc ; PMLR 77:192-207

Rate Optimal Estimation for High Dimensional Spatial Covariance Matrices

Yi Li, Aidong Adam Ding, Jennifer Dy ; PMLR 77:208-223

PHD: A Probabilistic Model of Hybrid Deep Collaborative Filtering for Recommender Systems

Jie Liu, Dong Wang, Yue Ding ; PMLR 77:224-239

Adaptive Sampling Scheme for Learning in Severely Imbalanced Large Scale Data

Wei Zhang, Said Kobeissi, Scott Tomko, Chris Challis ; PMLR 77:240-247

ST-GAN: Unsupervised Facial Image Semantic Transformation Using Generative Adversarial Networks

Jichao Zhang, Fan Zhong, Gongze Cao, Xueying Qin ; PMLR 77:248-263

Deep Competitive Pathway Networks

Jia-Ren Chang, Yong-Sheng Chen ; PMLR 77:264-278

Regret for Expected Improvement over the Best-Observed Value and Stopping Condition

Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh ; PMLR 77:279-294

Scale-Invariant Recognition by Weight-Shared CNNs in Parallel

Ryo Takahashi, Takashi Matsubara, Kuniaki Uehara ; PMLR 77:295-310

Using Deep Neural Networks to Automate Large Scale Statistical Analysis for Big Data Applications

Rongrong Zhang, Wei Deng, Michael Yu Zhu ; PMLR 77:311-326

Recognizing Art Style Automatically in Painting with Deep Learning

Adrian Lecoutre, Benjamin Negrevergne, Florian Yger ; PMLR 77:327-342

One Class Splitting Criteria for Random Forests

Nicolas Goix, Nicolas Drougard, Romain Brault, Mael Chiapino ; PMLR 77:343-358

Computer Assisted Composition with Recurrent Neural Networks

Christian Walder, Dongwoo Kim ; PMLR 77:359-374

Whitening-Free Least-Squares Non-Gaussian Component Analysis

Hiroaki Shiino, Hiroaki Sasaki, Gang Niu, Masashi Sugiyama ; PMLR 77:375-390

Semi-supervised Convolutional Neural Networks for Identifying Wi-Fi Interference Sources

Krista Longi, Teemu Pulkkinen, Arto Klami ; PMLR 77:391-406

Magnitude-Preserving Ranking for Structured Outputs

Céline Brouard, Eric Bach, Sebastian Böcker, Juho Rousu ; PMLR 77:407-422

A Word Embeddings Informed Focused Topic Model

He Zhao, Lan Du, Wray Buntine ; PMLR 77:423-438

Accumulated Gradient Normalization

Joeri R. Hermans, Gerasimos Spanakis, Rico Möckel ; PMLR 77:439-454

A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings

Sami Remes, Markus Heinonen, Samuel Kaski ; PMLR 77:455-470

Learning Deep Semantic Embeddings for Cross-Modal Retrieval

Cuicui Kang, Shengcai Liao, Zhen Li, Zigang Cao, Gang Xiong ; PMLR 77:471-486

Pyramid Person Matching Network for Person Re-identification

Chaojie Mao, Yingming Li, Zhongfei Zhang, Yaqing Zhang, Xi Li ; PMLR 77:487-497

Learning RBM with a DC programming Approach

Vidyadhar Upadhya, P. S. Sastry ; PMLR 77:498-513

Multi-Task Structured Prediction for Entity Analysis: Search-Based Learning Algorithms

Chao Ma, Janardhan Rao Doppa, Prasad Tadepalli, Hamed Shahbazi, Xiaoli Fern ; PMLR 77:514-529

Nested LSTMs

Joel Ruben Antony Moniz, David Krueger ; PMLR 77:530-544

On the Flatness of Loss Surface for Two-layered ReLU Networks

Jiezhang Cao, Qingyao Wu, Yuguang Yan, Li Wang, Mingkui Tan ; PMLR 77:545-560

Radical-level Ideograph Encoder for RNN-based Sentiment Analysis of Chinese and Japanese

Yuanzhi Ke, Masafumi Hagiwara ; PMLR 77:561-573

Recovering Probability Distributions from Missing Data

Jin Tian ; PMLR 77:574-589

Attentive Path Combination for Knowledge Graph Completion

Xiaotian Jiang, Quan Wang, Baoyuan Qi, Yongqin Qiu, Peng Li, Bin Wang ; PMLR 77:590-605

A Covariance Matrix Adaptation Evolution Strategy for Direct Policy Search in Reproducing Kernel Hilbert Space

Ngo Anh Vien, Viet-Hung Dang, TaeChoong Chung ; PMLR 77:606-621

\emphNeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural Networks

Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, Diana Marculescu ; PMLR 77:622-637

subscribe via RSS

This site last compiled Sat, 11 Nov 2017 21:42:31 +0000
Github Account Copyright © PMLR 2017. All rights reserved.