Volume 2: Artificial Intelligence and Statistics, 21-24 March 2007, San Juan, Puerto Rico

[edit]

Editors: Marina Meila, Xiaotong Shen

[bib][citeproc]

Contents:

Preface

Preface

Marina Meila, Xiaotong Shen ; PMLR 2:1-2

Accepted Papers

Policy-Gradients for PSRs and POMDPs

Douglas Aberdeen, Olivier Buffet, Owen Thomas ; PMLR 2:3-10

Generalized Non-metric Multidimensional Scaling

Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David Kriegman, Serge Belongie ; PMLR 2:11-18

Seeking The Truly Correlated Topic Posterior - on tight approximate inference of logistic-normal admixture model

Amr Ahmed, Eric P. Xing ; PMLR 2:19-26

A Boosting Algorithm for Label Covering in Multilabel Problems

Yonatan Amit, Ofer Dekel, Yoram Singer ; PMLR 2:27-34

Mixture of Watson Distributions: A Generative Model for Hyperspherical Embeddings

Avleen S. Bijral, Markus Breitenbach, Greg Grudic ; PMLR 2:35-42

Kernel Multi-task Learning using Task-specific Features

Edwin V. Bonilla, Felix V. Agakov, Christopher K. I. Williams ; PMLR 2:43-50

A Hybrid Pareto Model for Conditional Density Estimation of Asymmetric Fat-Tail Data

Julie Carreau, Yoshua Bengio ; PMLR 2:51-58

The Laplacian Eigenmaps Latent Variable Model

Miguel A. Carreira-Perpiñan, Zhengdong Lu ; PMLR 2:59-66

Visualizing Similarity Data with a Mixture of Maps

James Cook, Ilya Sutskever, Andriy Mnih, Geoffrey Hinton ; PMLR 2:67-74

Solving Markov Random Fields with Spectral Relaxation

Timothee Cour, Jianbo Shi ; PMLR 2:75-82

Fast search for Dirichlet process mixture models

Hal Daume III ; PMLR 2:83-90

Large-Margin Classification in Banach Spaces

Ricky Der, Daniel Lee ; PMLR 2:91-98

Learning A* underestimates : Using inference to guide inference

Gregory Druck, Mukund Narasimhan, Paul Viola ; PMLR 2:99-106

Exact Bayesian structure learning from uncertain interventions

Daniel Eaton, Kevin Murphy ; PMLR 2:107-114

Online Learning of Search Heuristics

Michael Fink ; PMLR 2:115-122

Deterministic Annealing for Multiple-Instance Learning

Peter V. Gehler, Olivier Chapelle ; PMLR 2:123-130

Approximate inference using conditional entropy decompositions

Amir Globerson, Tommi Jaakkola ; PMLR 2:131-138

Visualizing pairwise similarity via semidefinite programming

Amir Globerson, Sam Roweis ; PMLR 2:139-146

SampleSearch: A Scheme that Searches for Consistent Samples

Vibhav Gogate, Rina Dechter ; PMLR 2:147-154

Dissimilarity in Graph-Based Semi-Supervised Classification

Andrew B. Goldberg, Xiaojin Zhu, Stephen Wright ; PMLR 2:155-162

Hidden Topic Markov Models

Amit Gruber, Yair Weiss, Michal Rosen-Zvi ; PMLR 2:163-170

Space-Efficient Sampling

Sudipto Guha, Andrew McGregor ; PMLR 2:171-178

Information Retrieval by Inferring Implicit Queries from Eye Movements

David R. Hardoon, John Shawe-Taylor, Antti Ajanki, Kai Puolamäki, Samuel Kaski ; PMLR 2:179-186

A Nonparametric Bayesian Approach to Modeling Overlapping Clusters

Katherine A. Heller, Zoubin Ghahramani ; PMLR 2:187-194

Loopy Belief Propagation for Bipartite Maximum Weight b-Matching

Bert Huang, Tony Jebara ; PMLR 2:195-202

Learning Markov Structure by Maximum Entropy Relaxation

Jason K. Johnson, Venkat Chandrasekaran, Alan S. Willsky ; PMLR 2:203-210

Multi-object tracking with representations of the symmetric group

Risi Kondor, Andrew Howard, Tony Jebara ; PMLR 2:211-218

MDL Histogram Density Estimation

Petri Kontkanen, Petri Myllymäki ; PMLR 2:219-226

Incorporating Prior Knowledge on Features into Learning

Eyal Krupka, Naftali Tishby ; PMLR 2:227-234

Fast Low-Rank Semidefinite Programming for Embedding and Clustering

Brian Kulis, Arun C. Surendran, John C. Platt ; PMLR 2:235-242

Learning for Larger Datasets with the Gaussian Process Latent Variable Model

Neil D. Lawrence ; PMLR 2:243-250

Learning Nearest-Neighbor Quantizers from Labeled Data by Information Loss Minimization

Svetlana Lazebnik, Maxim Raginsky ; PMLR 2:251-258

Treelets | A Tool for Dimensionality Reduction and Multi-Scale Analysis of Unstructured Data

Ann B. Lee, Boaz Nadler ; PMLR 2:259-266

Efficient active learning with generalized linear models

Jeremy Lewi, Robert Butera, Liam Paninski ; PMLR 2:267-274

A Bayesian Divergence Prior for Classiffier Adaptation

Xiao Li, Jeff Bilmes ; PMLR 2:275-282

Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo

Han Liu, John Lafferty, Larry Wasserman ; PMLR 2:283-290

Fisher Consistency of Multicategory Support Vector Machines

Yufeng Liu ; PMLR 2:291-298

Semi-supervised Clustering with Pairwise Constraints: A Discriminative Approach

Zhengdong Lu ; PMLR 2:299-306

Recall Systems: Effcient Learning and Use of Category Indices

Omid Madani, Wiley Greiner, David Kempe, Mohammad R. Salavatipour ; PMLR 2:307-314

AClass: A simple, online, parallelizable algorithm for probabilistic classification

Vikash K. Mansinghka, Daniel M. Roy, Ryan Rifkin, Josh Tenenbaum ; PMLR 2:315-322

A Fast Bundle-based Anytime Algorithm for Poker and other Convex Games

H. Brendan McMahan, Geoffrey J. Gordony ; PMLR 2:323-330

Loop Corrected Belief Propagation

Joris Mooij, Bastian Wemmenhove, Bert Kappen, Tommaso Rizzo ; PMLR 2:331-338

Inductive Transfer for Bayesian Network Structure Learning

Alexandru Niculescu-Mizil, Rich Caruana ; PMLR 2:339-346

Maximum Entropy Correlated Equilibria

Luis E. Ortiz, Robert E. Schapire, Sham M. Kakade ; PMLR 2:347-354

Approximate Counting of Graphical Models Via MCMC

Jose M. Peña ; PMLR 2:355-362

Margin based Transductive Graph Cuts using Linear Programming

K. Pelckmans, J. Shawe-Taylor, J.A.K. Suykens, B. De Moor ; PMLR 2:363-370

A Unified Energy-Based Framework for Unsupervised Learning

Marc’Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, Yann LeCun ; PMLR 2:371-379

(Approximate) Subgradient Methods for Structured Prediction

Nathan D. Ratliff, J. Andrew Bagnell, Martin A. Zinkevich ; PMLR 2:380-387

A fast algorithm for learning large scale preference relations

Vikas C. Raykar, Ramani Duraiswami, Balaji Krishnapuram ; PMLR 2:388-395

The Rademacher Complexity of Co-Regularized Kernel Classes

David S. Rosenberg, Peter L. Bartlett ; PMLR 2:396-403

Continuous Neural Networks

Nicolas Le Roux, Yoshua Bengio ; PMLR 2:404-411

Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure

Ruslan Salakhutdinov, Geoff Hinton ; PMLR 2:412-419

A Latent Space Approach to Dynamic Embedding of Co-occurrence Data

Purnamrita Sarkar, Sajid M. Siddiqi, Geogrey J. Gordon ; PMLR 2:420-427

Memory-Effcient Orthogonal Least Squares Kernel Density Estimation using Enhanced Empirical Cumulative Distribution Functions

Martin Schaffoner, Edin Andelic, Marcel Katz, Sven E. Krüger, Andreas Wendemuth ; PMLR 2:428-435

A Stochastic Quasi-Newton Method for Online Convex Optimization

Nicol N. Schraudolph, Jin Yu, Simon Günter ; PMLR 2:436-443

Bayesian Inference and Optimal Design in the Sparse Linear Model

Matthias Seeger, Florian Steinke, Koji Tsuda ; PMLR 2:444-451

A Unified Algorithmic Approach for Efficient Online Label Ranking

Shai Shalev-Shwartz, Yoram Singer ; PMLR 2:452-459

Minimum Volume Embedding

Blake Shaw, Tony Jebara ; PMLR 2:460-467

A Framework for Probability Density Estimation

John Shawe-Taylor, Alex Dolia ; PMLR 2:468-475

Fast Kernel ICA using an Approximate Newton Method

Hao Shen, Stefanie Jegelka, Arthur Gretton ; PMLR 2:476-483

Ellipsoidal Machines

Pannagadatta K. Shivaswamy, Tony Jebara ; PMLR 2:484-491

Fast State Discovery for HMM Model Selection and Learning

Sajid M. Siddiqi, Geogrey J. Gordon, Andrew W. Moore ; PMLR 2:492-499

Analogical Reasoning with Relational Bayesian Sets

Ricardo Silva, Katherine A. Heller, Zoubin Ghahramani ; PMLR 2:500-507

Dynamic Factorization Tests: Applications to Multi-modal Data Association

Michael R. Siracusa, John W. Fisher III ; PMLR 2:508-515

Generalized Darting Monte Carlo

Cristian Sminchisescu, Max Welling ; PMLR 2:516-523

Local and global sparse Gaussian process approximations

Edward Snelson, Zoubin Ghahramani ; PMLR 2:524-531

Predictive Discretization during Model Selection

Harald Steck, Tommi S. Jaakkola ; PMLR 2:532-539

Emerge and spread models and word burstiness

Peter Sunehag ; PMLR 2:540-547

Learning Multilevel Distributed Representations for High-Dimensional Sequences

Ilya Sutskever, Geoffrey Hinton ; PMLR 2:548-555

Stick-breaking Construction for the Indian Buffet Process

Yee Whye Teh, Dilan Grür, Zoubin Ghahramani ; PMLR 2:556-563

Hierarchical Beta Processes and the Indian Buffet Process

Romain Thibaux, Michael I. Jordan ; PMLR 2:564-571

Nonlinear Dimensionality Reduction as Information Retrieval

Jarkko Venna, Samuel Kaski ; PMLR 2:572-579

The Kernel Path in Kernelized LASSO

Gang Wang, Dit-Yan Yeung, Frederick H. Lochovsky ; PMLR 2:580-587

Efficient large margin semisupervised learning

Junhui Wang ; PMLR 2:588-595

Semi-Supervised Mean Fields

Fei Wang, Shijun Wang, Changshui Zhang, Ole Winther ; PMLR 2:596-603

Fast Mean Shift with Accurate and Stable Convergence

Ping Wang, Dongryeol Lee, Alexander Gray, James M. Rehg ; PMLR 2:604-611

Metric Learning for Kernel Regression

Kilian Q. Weinberger, Gerald Tesauro ; PMLR 2:612-619

Performance Guarantees for Information Theoretic Active Inference

Jason L. Williams, John W. Fisher III, Alan S. Willsky ; PMLR 2:620-627

Transductive Classification via Local Learning Regularization

Mingrui Wu, Bernhard Scholkopf ; PMLR 2:628-635

How Powerful Can Any Regression Learning Procedure Be?

Yuhong Yang ; PMLR 2:636-643

SVM versus Least Squares SVM

Jieping Ye, Tao Xiong ; PMLR 2:644-651

Importance Sampling for General Hybrid Bayesian Networks

Changhe Yuan, Marek J. Druzdzel ; PMLR 2:652-659

Nonnegative Garrote Component Selection in Functional ANOVA models

Ming Yuan ; PMLR 2:660-666

Generalized Do-Calculus with Testable Causal Assumptions

Jiji Zhang ; PMLR 2:667-674

An Improved 1-norm SVM for Simultaneous Classification and Variable Selection

Hui Zou ; PMLR 2:675-681

subscribe via RSS

This site last compiled Mon, 29 May 2017 07:15:55 +0000
Github Account Copyright © PMLR 2017. All rights reserved.